
GSDLAB TECHNICAL REPORT

Compositionality of Update Propagation: Lax
PutPut

Zinovy Diskin

GSDLAB–TR 2017-02-01 Feb 2017

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/

The GSDLAB technical reports are published as a means to ensure timely dissemination

of scholarly and technical work on a non-commercial basis. Copyright and all rights

therein are maintained by the authors or by other copyright holders, notwithstanding

that they have offered their works here electronically. It is understood that all persons

copying this information will adhere to the terms and constraints invoked by each author’s

copyright. These works may not be reposted without the explicit permission of the

copyright holder.

Compositionality of update propagation: Laxed PutPut

Zinovy Diskin

McMaster University, Hamilton, Canada
diskinz@mcmaster.ca

Abstract

Compatibility of update propagation with update composition (the in-
famous Putput law) is fundamental for the mathematical modelling
of bx, but is not easy to ensure in practical scenarios. This severely
restricts practical applicability of elegant algebraic models based on
Putput, while leaving practical bx without solid algebraic support is
also unsatisfactory. The paper aims to mitigate these problems, and
presents the following findings. It is known that PutPut trivially holds
for the sequential composition of two inserts or two deletes (what John-
son and Rosebrugh called the monotonic Putput); it also holds for the
relational (pullback based) composition of a delete followed by an insert
(the mixed Putput). In the present paper, we will see that relational
Putput can fail for the relational composition of an insert followed by
a delete, which represents a wide class of practically interesting exam-
ples. We will also analyze different ways of update composition, and
discuss their interaction with update propagation. We will see that
update propagation and Putput need a 2-categorical setting, formulate
a notion of lax Putput, and show that it is much wider applicable to
practical situations than the ordinary strict Putput.

1 Introduction

Compatibility of update propagation with update composition (the infamous Putput) is fundamental for the
mathematical modeling of bx, but is not easy to ensure in practical scenarios if we treat compatibility in a
straightforward way. This severely restricts practical applicability of elegant algebraic models based on Putput,
while leaving practical bx without solid algebraic support is also unsatisfactory (for, at least, some members
of the bx community). Putput needs a careful analysis and investigation, but seems to be not a very popular
research subject in bx.

Problems with Putput were noticed since the very early work on lenses [9], and continued to be remarked
later in, e.g., [8, 15], but the first (and seemingly the only so far) careful and mathematically solid analysis of
Putput basics was undertaken by Johnson and Rosebrugh in [12]. They distinguished “easy” monotonic Putput,
when two consecutive inserts or two consecutive deletes are to be propagated, from more problematic mixed
Putput, when operation put must propagate an interleaving sequence of inserts and deletes. For the later case,
they found an equivalent but more elementary and easier to verify condition for the mixed Putput to hold. The
present paper continues Putput analysis and presents the following findings.

We will first consider different ways of update composition, and see that in whatever way an algebraic operation
of delta composition is defined, the real composition appearing in practice could be different, and, in general,
a user input is required to correct an automatically produced delta. Thus, we have a 2-delta between the
automatically produced and the real delta. However, the former always subsets the latter, if deltas are composed
as binary (multi)relations. This subsetting is in a sense preserved, when deltas are propagated backward to

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

the source side, and gives rise to a lax compositionality of update propagation. Then we will consider a simple
example of relational composition, in which an insert is followed by a delete, and see that Putput fails, but, again,
some lax version of Putput still holds; we will also argue that this example is a representative of a sufficiently
large class of practically interesting and important cases of update propagation.

Thus, different deltas, their compositions and relationships between them form the very core of update propa-
gation and Putput. This observation makes categorical models of bx essentially 2-categorical: deltas are 1-arrows,
and relationships between them are 2-arrows. The 2-categorical setting allows us to distinguish the strict Putput,
which requires equality of the two deltas (and hence their target models), from the lax Putput, in which the two
deltas and their target models are not equal nor isomorphic, but comparable via a uniquely defined mediating
2-construct. We will see that in many interesting cases, including the insert-delete example mentioned above,
while the strict Putput fails, the lax Putput holds. In a sense, problems of Putput mentioned in the literature
can be seen as the problems of forcing an essentially 2-categorical lax phenomenon into a 1-categorical strict
framework.

Our plan for the paper is as follows. We will begin in Section 2 with a very simple Example 1 to fix the
terminology, basic concepts, and issues to be discussed. Specifically, we consider relational, match-based and
mixed update compositions (in this paper, updates are spans a.k.a structural deltas between models), and discuss
how they coexist with Putput; the last subsection 2.3 builds a more abstract and general framework and presents
our first schema/pattern of the lax Putput. In Section 3, we consider Example 2, in which relational Putput fails,
discuss how general such type of examples could be, and build our second schema of the lax Putput; the last
subsection 3.3 integrates the two schemas into a general lax Putput pattern. Section 4 outlines a formalization
in terms of lax delta lenses. Remarks on related work and some historical sentiments can be found in Section 5,
which also concludes the paper.

2 Putput and Update Composition (relational, match-based, and mixed)

We will begin with a very simple example explaining the main notions and notations of the delta framework.
Then we introduce three types of update composition: relational, match-based, and mixed, and consider how
backward update propagation interacts with them.

2.1 Example 1: Basics of update propagation

Models, metamodels, and views

Metamodels are class diagrams with constraints. For example, suppose a metamodel M consisting of the only
class Person with two attributes, name1 and name2, both of type String. A view of this metamodel is another
metamodel N together with a mapping w: M ← N called the view definition. Suppose, for example, that N
consists of a class Person with the only attribute name of type String, and the view definition maps Person in
N to Person in M , and name in N to name1 in M . It means that in the w-view of M -models, attribute name2
is ignored while values of attribute name1 are called names. Thus, any model instantiating M is mapped to a
model instantiating N , and we have a view execution function between the respective model spaces getw:MMM →NNN
(note the reversal of the direction), whose name get abbreviates the command “get the view” (more interesting
examples of view definitions via mappings can be found in, e.g., [10, 2]). In the lens framework for bx, the view
mapping generating getw is forgotten, and the index w is omitted.

A simple model A instantiating metamodel M is shown in Fig. 1 (at the left top corner of the grey-border
rectangle labelled as Example 1a). It has two objects p1, p2 with attribute values as shown. As models are
stored in computers, p1, p2 should be understood as object identifiers (OIDs), and name1, name2 as attribute
slots that hold values, e.g., John and Henry. Function get applied to this model results in model B shown in the
figure. Although B has semantically the same objects as A, their OIDs are different — think, for example, about
model B stored in another computer. Moreover, mapping get is typically a non-deterministic function as the
view execution engine may not control OIDs in the view model stored in a different computer, and thus OIDs
may be different when the same get is applied to the same A at different time moments. If we do not want to
consider a family of gets indexed by time moments, it makes sense to consider models up to their isomorphisms
caused by isomorphic OID replacement; the more so that OIDs are invisible to the user, who sees isomorphic
models as equal. Thus, pi, qi should be seen as representatives of the respective equivalence classes, which
makes get a well-defined single-valued function (we say “get is defined up to isomorphism”), and we can write
B = get(A) or sometime A.get = B when this notation makes reading formulas easier. In this paper, we will not
make “up-to-iso” considerations formally accurate (which is a rather laborious endeavour) and will work with

Model A
p1: Person

name1=John
name2=Henry

p2: Person
name1=Mary
name2=Ann

Model A’
p1': Person

name1=John
name2=Henry

Model A” = A
	⋈		

p1": Person
name1=John
name2=Henry

p2’’: Person
name1 = Mary
name2 = ?

Model B
q1: Person

name=John
q2: Person

name=Mary

Model B’
q1': Person

name=John

Model B”
q1": Person

name=John
q2": Person

name=Mary

:get

p1→
p1”

p2 →

→
 p2”

Example 1a

Delta 𝒄<>

p1<>← p1”
p2<>← p2”

Corr RAB
p1 ← q1

name1← name
p2 ← q2

name1← name

1:put

2:put

3:put

4:put

4:put

q1→
q1”

q2 →

→
 q2”

B
B

’ ⋈
B

’B
”

AA<>

B
B

’<>								B
’B

”

Model A<>	

p1<>: Person
name1=John
name2=Henry

p2<>	: Person
name1=Mary
name2=Ann

A
A’ ⋈

A’A
”

	[⊆]			
𝜹

q1 →
 q1”

q2 →
 q2”

AA⋈

Figure 1: Two examples of backward update propagation: 1a (framed) and 1b (the entire figure)

a semi-formal understanding of equality of two models in the hope (supported by the previous experience of
managing similar issues) that with a suitable formal definitions everything would work smoothly.

In the figure, the grey arrow labeled :get denotes an application of function get to model A: its bulleted
tail is attached to the argument/input object, and the arrow head points to the result – model B. The second
arrow head (note the dashed-dotted branch) points to the second object produced by the view execution – a
traceability/correspondence mapping RAB that maps elements of B to their origin in A. This mapping is essential
for update propagation, but as it can be computed from A (for a given view definition), in the asymmetric lens
framework, the correspondence is implicit and officially does not occur into the output of get– hence our dash-
dotted notation for it.

Deltas

Consider the following scenario further referred to as Example 1a. In the first step, model B is updated to model
B′. Imagine a user manually editing the model with a computer, who deletes object q2, and does nothing with
object q1. Such an update can be specified by a delta ∆BB′ (note the respective block-arrow in the figure),
which consists of a single link (q1, q1′) (in fact, an ordered pair) showing that the object q1 is preserved in B′.
Placing into the delta a targetless arrow from q2 is just a syntactic sugar to show that set of links ∆BB′ does
not contain any link from q2, which means that object q2 is deleted in B′. Thus, formally, ∆BB′ is a singleton
{(q1, q1′)}. Of course, in the case of a user manually editing model B with a computer, OIDs q1 and q1′ would be
identical (which is not excluded by our notation). However, if model B′ is copied to another computer, having a
different OID would be a useful option for our update modelling (with all reservations about OIDs and up-to-iso
applicable again).

We assume that our view metamodel says that the multiplicity of attribute name is exactly 1, i.e., any Person
object has one and only one name slot. Hence, if two objects are the same, their name slots are also the same,
and we may safely omit links between such slots. However, for attributes with multiplicity more than one (e.g.,
think of an attribute phone of multiplicity 0..3), data about which phone-slot in model B corresponds to which

phone-slot in model B′ is to be included into the delta. Linking slots in B and B′ declares them to be the same
slot, but it does not prohibit changing the value held in the slot. E.g., despite that q1 and q1′ are linked, which
implies their name-slots are linked, the values held in these slots would be different if Person q1 changed his name
from John in B to, say, Jo in B′. In this paper we do not consider attribute modifications, but some details can
be found in [2, Section 3].

Importantly, for the same two models, there can generally be multiple deltas between them. E.g., for models
B and B′, besides the delta shown in the figure, there is an empty delta that specifies object q1′ as a new
object different from q1, which just happens to have the same name. In this sense, the notation ∆BB′ could
be misleading as pairs of models do not actually index deltas, but within our fixed scenario, this notation is
convenient.

Update propagation

As updates are specified by deltas, update propagation amounts to delta propagation. In general, there are many
source models A′ and deltas ∆AA′ , whose get-views are equal to B′ and ∆BB′ , hence we need some update policy
to ensure uniqueness. A reasonable update policy should propagate updates along the correspondence RAB , i.e.,
in our case, delete object p2 corresponding to q2, and keep object p1 untouched—the result is the model A′ and
delta ∆AA′ as shown in the figure. Note that these computed model and delta are blank (and blue with a colour
display) to distinguish them from given (specified by the user rather than computed) models and deltas, which
are shaded (and black. The blue colour aims to refer to mechanical computation.) The propagation procedure
is modelled as an application of operation put to model A and delta ∆BB′ (note the group of arrows 1:put). The
correspondence RAB is essentially employed in the propagation, but as it can be computed for a given model A,
in the asymmetric lens framework the explicit input for put is a pair (A,∆BB′) rather than (RAB ,∆BB′) (note
the dashed input arrow from RAB to 1:put illustrating the trick).

Now we are ready to approach the main issue of our analysis.

2.2 Example 1 continued: Update composition and Putput

Suppose that after update ∆BB′ was propagated, model B′ is again updated by adding a new object q2′′, which
is specified by delta ∆B′B′′ (note the arrow without source). Applying put to this delta results in a model A′′

with a new object p2′′ corresponding to q2”, and the respective delta ∆A′A′′ . Note that model A′ is uncertain,
as the name2 value for the newly inserted object is not known, and the attribute slot contains a null value ?.

Our main question is what happens if we compose updates ∆BB′ and ∆B′B′′ into a “jump” update ∆BB′′ =
∆B,B′ ;;; ∆B′,B′′ (where ;;; denotes the operation of update composition), and propagate the result to the source
side into delta ∆ ;;;

AA ;;; from model A to some model A ;;; : whether A ;;; = A′′ and ∆ ;;;
AA ;;; = ∆AA′ ; ∆A′A′′ , or not?

Two main actors determine the answer:

(a) How operation put restores missing information on the source side;

(b) How much of the information about the component updates is forgotten in the composed (jump) update.
We will call this information mediating.

In our simple example, restoration (a) is very simple – if a Person in the view is newly inserted, his/her
name2 is set to a null. But update composition is non-trivial even in this simple example, and it is the subjects
of our analysis below. We will consider two somewhat opposite ways of composing updates. One is relational
composition, which strives to respect the mediating information; we will also say that relational composition is
history respecting. The other is match-based composition, which entirely ignores the mediating information, and
thus is history ignoring.

Relational composition and Putput

As deltas consist of links, it’s natural to compose deltas by composing links. Consider again deltas ∆BB′ and

∆B′B′′ in Fig. 1. The first delta has a link q1
`′- q1′ targeted at q1′, and the second one has a link q1′

`′′- q1′′

started from q1′; we will call such links joinable. By composing these links, we obtain a link q1
`′./ `′′- q1′′ from

the source of `′ to the target of `′′ (symbol ./ means to remind about the composition mechanism based on
composing joinable links). If the component deltas would have more links, we repeat the procedure and create
a jump link for each pair of joinable links. In this way, we obtain a delta ∆BB′./∆B′B′′ :B → B′′ from the
source of the first delta to the target of the second. Such composition is basically the well-known binary relation

composition generalized for multirelations. (And indeed, symbol ./ is often used in the database literature to
denote the operation of relational join.) We will call this way of composing deltas relational.

Note that if even the component deltas are ordinary (not multi) relations (i.e., every possible pair of elements
either occurs into the delta or not), their composition described above can result in a multirelation. Indeed, if we

have two pairs of joinable links between the same source and target, say, q
`′1- q′1

`′′1- q′′ and q
`′2- q′2

`′′2- q′′,

the composed delta ∆BB′./∆B′B′′ would have two different links, q
`′1./ `

′′
1- q′′ and q

`′2./ `
′′
2- q′′ between the same

pair of OIDs; we will call such links parallel.
Thus, relational composition treats mediating information rather accurately except the case when an object

is inserted in model B′, and then deleted in model B′′. We will consider such a case later in Sect. 3, but in our
Example 1a, relational composition is accurate, restoration of the source information is not problematic, and
hence it is not surprising that Putput holds: it is easy to verify that in Fig. 1,

put(A,∆BB′) ./ put(A′,∆B′B′′) = put(A,∆BB′./∆B′B′′). (1)

We will phrase this pleasant result by saying that relational Putput holds for Example 1a.

Match-based composition and Putput

Consider the case, when deltas between models are computed by matching based on a key attribute rather than
independently set by the user as in the scenario above. Suppose that attribute name on the view side is a key to
class (table) Person, i.e., for any two objects p1, p2 instantiating the class, equality p1.name = p2.name implies
p1 = p2. For example, deltas ∆BB′ and ∆B′B′′ can exactly be computed by matching objects by their name
attributes. In this view of deltas and updating, the composition of two deltas would be the delta determined by
matching the end models, B and B′′, while the mediating model B′ is entirely ignored. In a sense, this way of

composition is opposite to relational, and we denote it by an “opposite” symbol <>: ∆BB′<>∆B′B′′
def
= ∆<>

BB′′ ,
where ∆<>

BB′′ denotes the delta produced by matching.
Thus, while in the relationally composed delta ∆./

BB′′ = ∆BB′./ ∆B′B′′ , object q2′′ is a newly inserted Mary,
the match-based delta ∆<>

BB′′ has an additional link (q2, q2′′) that makes object q2′′ the same Mary earlier
existing in model B, and models B and B′′ are thus equal (up to iso). Hence, delta ∆<>

BB′′ is propagated to
the isomorphism/identity delta ∆AA<> as shown in Fig. 1 by dashed elements outside the frame (green with
a colour display), and Putput fails. However, despite Putput stating equality (we say strict Putput) fails, we
can still find some discipline in the propagation results. To wit: note the horizontal green delta c<> from A′′

to A<>, which simply completes model A′′ by replacing the null for “new” Mary’s name2 by its value Ann for
the previously existing Mary. This delta is uniquely determined by our update composition and propagation
procedures. Moreover, the discipline also includes relationships between deltas discussed below.

Mixed composition and Putput: 2-deltas

We have considered two possibilities of update composition: ∆./
BB′′ = ∆BB′./∆B′B′′ for relational composition

(r-composition), and ∆<>
BB′′ = ∆BB′<>∆B′B′′ for match-based m-composition. However, which of these two

variants is right, i.e., correctly models the reality? We instantly find than neither one does. It may happen that
the “new Mary” is indeed a new person that just happens to have the same name as Mary from model B, and
then delta ∆<>

BB′′ is wrong. (That is, while attribute name is a good key for a given state of the model, it does
not work across the states, i.e., states at different time moments. We will phrase this by saying that name is a
valid static key, but invalid dynamic key.) Or it may happen that new Mary is the same Mary from model B,
which left the domain at the moment specified by model B′ but came back at the moment of model B′′.1Then
delta ∆./

BB′′ is wrong.
Moreover, for models containing multiple classes, there are many formal ways of composing deltas, which

differ by for which classes composition is relational, and for which is match-based. For example, suppose that
our models contain two classes, Person and Car, and for objects of class Person we use r-composition, while for
Car, m-composition is used. Then, we would have four ways of computing composed deltas: entirely relational,
entirely match-based, and two mixed ways depending on which of the classes is managed relationally and which

1Think, for example, about class Person as a class of employees of some company, and of Mary as an employee who quit the
company at the time of model B′ and was hired again at the time of B′′. Or, even simpler, the user who was editing model B,
deleted Mary and saved the result as B′, but later recognized that it was an error, and so in model B′′ the same object Mary is to
be restored with all its attributes.

is match-based. Thus, there is a whole variety of formal automatic compositions, but often neither of them can
always be semantically correct as we have just discussed. That is, for a particular pair of deltas ∆BB′ , ∆B′B′′ ,
we can find a formal composition ∆#

BB′′ (# ∈ {./ ,<>, ./<>, ...}) equal to the correct delta ∆BB′′ , but chances
that it works for all pairs are not significant. For instance, in Example 1, we can have ∆BB′′ = ∆<>

BB′′ , but
∆B′B′′′ = ∆B′B′′./∆B′′B′′′ for a consecutive series of updates from B′ to B′′ to B′′′. We need to find a way of
managing this diversity.

As we have different types of deltas between models, we need a way to compare them. The simplest one is
to compare deltas as sets of links, which works well under condition that the source and the target models of
deltas to be compared are the same (i.e., deltas are parallel). For such deltas, their sets of links can coincide, be
disjoint, intersected, or one be included into the other. In the latter case, we call the inclusion mapping a 2-delta
and denote it by a double arrow, or sometimes by the set-inclusion symbol ⊆. (Then deltas between models can
be called 1-deltas.) For instance, in Fig. 1 we have two 2-delta declarations labelled by δ on the right, and ε on
the left. The content of these declarations is specified in the equations below:

δ: ∆BB′./∆B′B′′ ⊆ ∆BB′<>∆B′B′′ (2)

ε: (∆AA′./ ∆A′A′′) ./ c
<> ⊆ ∆AA<> (3)

Note that mapping c<>, which fixes the gap between models A′′ and A<>, is a necessary ingredient in (3) as
2-delta subsetting can only be declared for parallel 1-deltas.

Now we can summarize our analysis of Example 1 in the following way. If the real composed delta coincides
with the relationally composed, ∆BB′′ = ∆./

BB′′ , then strict Putput stating the equality of two deltas holds — see
eq. (1). If the real composed delta is match-based, ∆BB′′ = ∆<>

BB′′ , and hence 2-delta δ gives us a comparison
between the real and the relationally composed 1-deltas, then eq. (3) gives us the following lax form of Putput:

put(A,∆BB′) ./ put(A′,∆B′B′′) ./ put2(A, δ) ⊆ put(A,∆BB′′) (4)

where delta c<> from (3) is considered as the result of the 2-activity of operation put, or 2-projection of put, and
is denoted by put2(A, δ) (we have also used associativity of ./).

Our next goal is to see how much the content of the story described above for Example 1 can be extended for
more general cases of update propagation.

2.3 Generalizing Example 1

Relational vs. match-based composition

First, we need to make the notion of (structural) delta more accurate via the notion of span. That is, an update

u of model X to model Y is modelled by a diagram X �
udel

Hu
uins- Y , in which Hu is the model consisiting

of all sameness links declared in u, which is called the head of the span, and udel, uins are injective mappings
that specify, resp., deletions and insertions caused by u. To wit: X’s elements beyond the range of udel are
deleted, and Y ’s elements beyond the range of uins are inserted. For example, the head of span ∆BB′ in Fig. 1
is a model consisting of one object q1q1′, whose attribute name has value John by default. If this update along
with deletion of q2 would change the name of q1, say, to Jo, then the name-slot of q1q1′ would hold a null, and
mapping udel would map this null to John, while uins would map it to Jo (details and formalization can be found
in [2, Sect.3]) Clearly, update u is a pure deletion iff uins is the identity of Y (up to iso), and u is a pure insertion
iff udel is the identity of X (up-to-iso). Spans will be denoted by stroked arrows u : X 9 Y in text, or bulleted

arrows X
u
•- Y in diagrams.

Now suppose we have two consecutive updates on the view side: v′ : B 9 B′, v′′ : B′ 9 B′′, and let
v./ : B 9 B′′ and v<> : B 9 B′′ denote their r- and m-compositions resp. The r-composition is given by the
pullback (PB) of mappings v′ins and v′′del as shown in the diagram Fig. 2 (note the label [pb1]), which precisely

describes the operation of joinable link composition that we considered above. Thus, Hv./
def
= H1, v./del

def
= p′1; v′del,

and v./ins
def
= p′′1 ; v′′ins. The m-composition is specified by another PB: a key set of attributes is modeled by a set of

functions from the object set of a model to some domain of values (note arrows key and key′′, which actually are

tuples of functions), to which we apply PB (note the label [pb2]) and obtain span (H2, p2, p
′′
2). Now Hv<>

def
= H2,

v<>del
def
= p2, and v./ins

def
= p′′2 .

B

Hv′

v
′
de
l

-

H2
�!

p2

-

H1

p
′
1

-

[pb1] B′

v ′
ins-

[pb2] Val

key
-

Hv′′

v
′′
de
l

-p ′′1
-

B′′

ke
y
′′

-

p ′′
2

-

v ′′ins-

Figure 2: Relational vs. match-based
composition

If the diamond H1BValB′′ is commuttaive (we will discuss it
shortly), i.e.,

p′1; v′del; key = p′′1 ; v′′ins; key′′ (5)

then by the universality of [pb2], we have a uniquely defined map-
ping ! as shown in the diagram. Note that although both spans,
(p′1, p

′′
1) and (p2, p

′′
2), are jointly monic (as produced by PB), span

HHH = (p′1 ;;; v′del, p
′′
1 ;;; v′′ins) is not necessarily monic, and hence mapping !

is not necessary injective (and indeed, matching does not care about
by how many ways an object in B can be linked to its match in B′′

via a mediating object in B”). But if span HHH is jointly monic, which
is quite normal (e.g., in our Example 1), then mapping ! is injective,
and becomes a set inclusion when we consider heads of spans up to
iso – this is the inclusion δ in Fig. 1.

Commutativity (5) is essential for the existence of mapping !. This
condition requires that an object does not change its key attribute
values. For instance, in the example in Fig. 1, if object q1 changes
its name to, say, Jo in B′ and will keep it in B′′, then semantically
true link q1q1′′ ∈ Hv./ will be lost in Hv<> . On the other hand, if there was some Jo in model B, who is deleted
from B′ and B′′, matching B and B′′ would mistakenly link two different objects (named Jo and John in B) as
the same. Note that in both these cases of erroneous match, attribute name remains a valid static key, i.e., no
two different objects at a model state have the same name. Thus, the match-based composition is semantically
flawed and can do both: create invalid links and miss valid links.

Relational composition behaves much better: although it can miss valid links (and treat returned Mary from
model B as a new Mary), it cannot create an invalid link. It allows us to postulate a semantically valid inclusion
δ : v./ ↪→ v for any consecutive pair of updates v′ : B 9 B′, v′′ : B′ 9 B′′ and their r-composition v./ = v′./ v′′

as shown in the right part of diagram in Fig. 3 (note the label [=] declaring commutativity of the triangle). This
observation is formalized in Sect. 4.1 via the notion of a model as a lax functor. Laxity is also fundamental for
Putput as discussed next.

A
:get - B

1:put↙↙

[=] A′ -

u ′
•

-

B′
�

v
′

•

[=]

↖↖εδ 2:put↙↙

Av �
cδ�

u
=

pu
t A

(v
)

•

A./ = A′′

• u./..................?

..................

:get -
�

•
u
′′

B′′

v./ •.................?

.................. δ⇒• v

?

•
v ′′

-

Figure 3: Towards general Putput, I: Backward propagation of 2-deltas

Lax Putput

Consider the diagram in Fig. 3, in which all vertical and inclined arrows are spans (note bulleted bodies of those
arrows) denoting deltas. Deltas on the view side are denoted by v with superscripts, their backward propagations
on the source side are denoted by u with the respectrive superscripts, e.g., u′ = putAv

′ and u′′ = putA′v
′′, where

we use a bit more compact notation, in which delta put(A, v) is denoted by putAv. We assume that Putput holds

for r-composition, and thus u./
def
= putA(v./) equals to u′./ u′′ (note the left label [=]).

As discussed above, 2-arrow δ says that delta v contains additional sameness links, and thus there are objects
in B′′, which are new according to delta v./ but came from B according to v. As backward propagation of
newly created objects leads to source models with nulls, in general, model A./ has nulls where model Av has

certain values. Thus, models Av and A./ are different, and deltas u = putAv and u./ are also different and
even non-parallel. However, as model A./ has nulls where model Av has certain values, there is a uniquely
defined (partial) completion delta cδ as shown in the diagram.2 Finally, it’s reasonable to assume that update
propagation is monotonic wrt. inclusion of sets of links, and if delta v./ has less links than v, then delta u./ ;;; cδ

has less links than u, which is shown by 2-delta εδ.
The schema looks plausible, but it assumes that relational Putput holds strictly. In the next section we consider

a simple example showing that this assumption can fail if update v′ is insertion, while v′′ is the respective deletion.

3 Problems of Relational Putput

A
:get - B

1:put↙↙

[=] A′ -

u ′•
-

B′
�

v
′
•

[=]

↖↖ε./ 2:put↙↙

A./ �
m./�

u
./

=
pu

t A
(v
./

)
•

A′′

• u′′′..................?

..................

:get -
�

•
u
′′

B′′

• v./

?

•v ′′
-

Model A
c1,c2:PhDC

f1 :PDF

w1 :WS

Model B

g1 :PDF

Model A′

:PhDC

f1,f2:PDF

w1,w2:WS

Model B′

g1,g2:PDF

Model A./

c1,c2: PhDC

f1 : PDF

w1 : WS

Model A′′

c1",c2":PhDC

f1 :PDF

w1,w2 :WS

Model B′′

g1 :PDF

Figure 4: Towards general Putput, II: Lax relational Putput

3.1 Example 2: Relational Putput can fail

We consider yet another synchronization scenario. Suppose that the source models specify states of some research
project consisting of two tasks. Each of them is to be performed by either a post-doctoral fellow (PDF), or by
two PhD candidates (PhDC), but due to budgetary constraints, only one of these options is allowed. In addition,
a PDF is to be provided with one work station (WS). For example, model A in the top right part of Fig. 4 shows
some state of the project, in which the workforce consists of two PhDC and one PDF with his workstation. On
the view side, only PDFs involved in the project are shown. This gives us the view B shown in the figure.

Now suppose that an updated view B′ shows a new PDF g2 added to PDF g1. Hence, due to budgetary
constraints, two PhDC should be assigned to another project—see model A′, whose dashed frame (blue with a
color display) shows that this model is computed. In the next step of the scenario, the recent PDF g2 quits, and
so two PhDC should be hired on the source side to ensure performance, while g2’s workstation may be kept to
minimize the amount of changes — these changes result in model A′′. Whether PhDC c1′′, c2′′ are fresh for the
project, or the previous PhDCs got involved again, this information cannot be specified with delta v′′ : A′ 9 A′′

and is lost for update v′′. On the other hand, relational composition v./ = v′./ v′′ is identity, which is propagated
to identity on the source side. Thus, the state A./ is the same as A (up to iso), and delta u./ is identity. Note the
essential difference between updates u′′′ = u′./ u′′ and u./ : not only model A′′ has an extra WS in comparison
with A./ , but according to update u′′′, model A′′ has two newly hired PhDC, while two PhDC in model A./ are
the same as in state A according to update u./ . Thus, relational Putput fails.

However, the good news is that some lax discipline of update propagation still holds. Indeed, there is a
uniquely defined mediating delta m./ : A./ 8 A′′ (consisting of a set of horizontal links in Fig. 4), which map

2A rather complicated theory of uncertain models and completions can be found in [5], but it is much more general than our
needs in the present paper.

(a) newly created objects in A′′ to their counterparts in A./ , (b) objects in A′′ that were preserved from A (via
composition u′′′) to their counterparts in A./ ∼= A, and, finally, (c) deletes extra objects in A′′. Of course, there
are two bijections of set {c1′′, c2′′} to set {c1,c2}, but if roles of the two PhDCs are indistinguishable, then our
up-to-iso approach to models equalizes these two bijections, while if the two PhDCs play different roles specified
in the metamodel, then there is only one role-preserving bijection: we map c1′′ to that ci, which plays the same
role.

Now composing u′′′ with m./ results in a delta parallel to u./ , which does not have any extra links due to
(c), but misses some of u./ ’s links due to broken links in B′. For instance, in Fig. 4, there are links c1→ c1 and
c2→ c2 in u./ , but there are no links c1→ c1′′, c2→ c2′′ in u′′′. This explains the 2-delta ε./ : u′′′./ m./ ⇒ u./ .

Despite the simplicity of the example, it illustrates a sufficiently general mechanism of violating strict Putput,
but keeping a lax Putput—we discuss this in the next section.

3.2 Generalizing Example 2

In simple cases, a view definition mapping w: MMM ←NNN is just a projection that cuts out a piece of MMM (e.g., in our
Examples 1 and 2). In complex cases, we first augment MMM with derived elements defined by queries (in fact, such
elements are query definitions), and then cut out a required part in the augmented MMM , i.e., a view definition is a
Kleisli mapping w: Q(MMM) ← N wrt. the monad specifying the query language. Then computing the w-view of
model A ∈MMM , getw(A), amounts to, first, executing the queries in the image of w, which results in an augmented
model Q(A), then cutting out the respective piece in Q(A), and finally retyping the result to metamodel NNN .
Details of how this works can be found in [7]. Now suppose that model B = getw(A) is updated by inserting a
piece Y , which we informally encode by writing B′ = B+Y . To restore consistency, a respective piece X should
be added to Q(A), Q(A′) = Q(A) + X, and if the queries used in the view definition are monotonic (which is
anyway a basic assumption underlying functoriality of get), then some piece Z should be added to A so that
A′ = A+ Z and Q(A′) = Q(A) +Q(Z).

However, normally models are bound by constraints, and compliance with some constraints, say, R, may force
to complement the addition of Z to A by adding to A another related piece, say, ZR (e.g., workstations for PDFs
in our example). Moreover, other constraints (like budgetary requirements in our example), say Σ, may force to
complement the addition of Z by deleting from A some piece ZΣ (removal of PhDC in our example). We encode
this complex interplay of different constraints by writing

A′ = A+ Z + ZR − ZΣ = (A− ZΣ) + Z + ZR (6)

The next step of our scenario is deletion of Y so that B′′ = B + Y − Y = B. Consistency restoration leads to
deleting X from Q(A′), which for many update policies would cause deleting Z from A′. However, deletion of Z
does not necessarily imply deletion of ZR like in our example with workstations, i.e., constraints R may work in
only one direction. Also, the metamodel may have constraints Π dual to Σ in the sense that deletion of Z from
A′ causes addition to A” of some piece ZΠ (performance requirements in our example forcing to have either two
PhDC or one PDF for the task). Encoding this interplay in our “algebra” gives us equation

A′′ = (A− ZΣ) + ZR + ZΠ (7)

Importantly, if even “fighting” constraints Σ and Π are of equal power (like budgetary and performance require-
ments in our example), and pieces ZΣ and ZΠ are isomorphic (like in our example, where the deleted piece ZΣ

amounts to two PhDCs, and the added piece ZΠ amounts to two PhDC again), the total of (A−ZΣ) +ZΠ is not
A (i.e., update u′′′ is not an identity) as relational composition does not create links between the newly added
piece ZΠ and its counterpart ZΣ (exactly like in our example, when two PhDCs are fired and then hired again).

Now we notice that model A′′ can be updated to model A./ ∼= A in the following canonic way m./ : the piece
(A− ZΣ) is identically mapped to itself in A, the new piece ZΠ (two new PhDCs) is mapped to its counterpart
ZΣ (two previous PhDCs), and finally the piece ZR (workstation w2) generated by “unidirectional” contraints
R is deleted. Composing just specified delta with vertical composed delta from A to A′′ via A′ (i.e., u′′′) still
lacks links from ZΣ to ZΠ, which gives us 2-delta ε./ as shown in the diagram Fig. 4.

The considerations above although quite informal still demonstrate the generality of the mechanism under-
lying the example. A mandatory relationship R regulating additions of new source elements, and mutually
opposite constraints Σ and Π (resources vs. performance) seem to be quite general notions appearing in many
view definition cases, and their interaction between themselves and update propagation were specified in rather

general terms. Obviously, if relational Putput fails in a simple example, it will fail in many other more or less
similar and practically interesting cases. What is less clear is how stable the idea of having a lax discipline for
relational Putput, i.e., having a unique 1-delta m./ and a unique 2-delta ε./ medaiting the two results of update
propagation. Here an accurate formalization of the generalization above would be very helpful, and it hopefully
could be done if we enrich the model spaces with some additive structure suggested by equations (6,7).

3.3 Lax Putput

Diagram in Fig. 3 specifies a lax Putput schema in the assumption that relational Putput holds strictly. As we
have just seen, relational Putput is also lax, and thus the schema should be modified as shown by diagram in
Fig. 5. This diagram integrates the two previous diagrams, and we again slightly simplify notation to make the
meaning of the diagram more transparent. The right-most triangle commutativity means that v./ = v′./ v′′.
The real update delta v supersets v./ which is shown by a 2-arrow δ.

A
:get - B

1:put↙↙

[=] A′
:get -

u ′
•

-

B′
�

v
′

•

[=]

↖↖εδ ↖↖ε./ 2:put↙↙

Av �
cδ�

u
v =

putA
(v)

•

A./ �
m./�

u
./

=
pu

t A
(v
./
)

•

A′′

• u′′′..................?

..................

:get -
�

•
u
′′

B′′

v./ •

?

δ⇒• v

?

•
v ′′

-

Figure 5: Towards general Putput, III: diagrams in Fig. 3 and Fig. 4 are integrated

Deltas v′ and v′′ are propagated to u′ and u′′ resp, and u′′′ = u′./ u′′ (note the second commutativity
declaration). However, the backward propagation of v./ , putAv

./ , is not equal to u′′′ as relational Putput
can fail if v′ is an insertion and v′′ is a deletion. Thus, putAv

./ is a different delta u./ , and mediating delta
m./ together with 2-delta ε./ provide a comparison between the two. In this way, the laxity of relational
Putput is provided by the triangle around ε./ . Similarly, the leftmost triangle around εδ provides the mediating
constructs for propagating back 2-delta δ. An important difference between these two triangles is that cδ is a
partial completion mapping that does nothing besides filling some null slots with values (recall our Example 1).
In contrast, while delta m./ also includes a significant completion part, it also can delete objects (recall our
Example 2). However, neither cδ nor m./ insert objects in our examples.

Now by standard arguments of 2-category theory, we conclude that tiling the two comparison triangles results
in a comparison triangle with base m./ ./ cδ and comparison 2-arrow (ε./ ; cδ); εδ, where ; denotes composition of
a 2-arrow with 1-arrow (actually with the respective 2-identity) in the standard 2-categorical way.

4 Towards Formalization: Lax Lenses

We will outline a formal framework, in which our preceding discussion can be specified. This work is in progress,
some constructs behave well and settled, but there are also several ad hoc definitions, whose clean categorical
elaboration is still to be found.

4.1 Models as (lax) trajectories

As discussed in [6], model synchronization is a dynamic rather than static notion: what is to be synchronized
is trajectories of models in their model spaces rather than discrete model states. For the asymmetric case, we
may assume the same tree I of version numbers for both the source and the view models, which are interpreted
as mappings A: I →MMM and B: I →NNN considered consistent if Ai.get = Bi for all i∈I (we write Ai, Bi for A(i),
B(i) respectively). In the delta setting, we have a richer picture in which tree I is considered a graph, model

spaces are also graphs, and A,B are graph morphisms considered consistent if uij .get = vij for all pairs i ≤ j in
I with i being the parent of j if i < j, and uij = A(ij), vij = B(ij) being the respective updates (deltas). If the
source update uij is the result of backward propagation of the view update vij , then the equality above is the
PutGet law for delta lenses.

As update composition is a key part of the picture, we consider model spaces as categories, and any tree I
can be seen as a poset and hence a category as well. To fully employ the categorical machinery, we would like
to make mappings A,B functors, i.e., graph morphisms preserving composition. However, as our discussion in
Section 2 shows, it would exclude many practically important cases. Fortunately, relational composition always
subsets semantically valid composition, and then declaring mappings A,B to be lax functors into respective
model spaces considered as 2-categories, would not be practically restrictive. Thus, for any pair of composable
arrows in I, i.e., for any triple i ≤ j ≤ k, we require existence of mediating 2-arrows: εijk : uij./ ujk ⇒ uik for A
and δijk : vij./ vjk ⇒ vik for B3, which make A,B lax functors. Hence, the slogan: models are lax trajectories.
Lax delta lenses are intended to be a gadget that synchronizes such lax trajectories by propagating updates back
and forth.

4.2 Lax lenses

The forward propagation half of the lens structure is easy. Model spaces are categories with a posetal 2-structure
(i.e., categories enriched over posets), and get:MMM →NNN is a strict 2-functor. It is easy to see that 2-functoriality
is just an extension of get’s monotonicity for 2-arrows. Two models (as trajectories) A: I → MMM , B: I → NNN
are called consistent if A; get = B as 2-functors. This equality implies (o) state-based consistency Ai.get = Bi
for any version number i∈I, (i) delta-based consistency uij .get = vij for any pair i ≤ j in I, and (ii) 2-delta
consistency εijk.get = δijk for any triple i ≤ j ≤ k in I.

The second half of the lens structure—backward propagation with operation put—is much more complicated
because we need to describe two lax phenomena: (a) put’s action on 2-deltas, and (b) lax Putput as such. We
will consider the former in Sect. 4.2.2 and the latter in Sect. 4.2.3, but first we need some preliminaries.

4.2.1 Preliminaries

Triangle functors

A

A1
u -

�

u1

A2

u1;u

?

δ⇒ u2

?

Let CCC be a small 2-category. We will write CCCi, i = 0, 1, 2 for, resp., its set
of objects (0-cells), arrows (1-cells) and 2-arrows (2-cells). If u is an arrow
(1- or 2-cell), then •u denotes its source cell, and u• its target cell. For
1-arrows this notation is especially suggestive as bulleted symbols denote
objects, and we will mainly use this notation for 1-arrows.

Let A ∈ CCC0 be an object. The set of all 1-arrows from A is denoted by
CCC1(A, ∗), and can be converted into a category TTTA in the following way.
Objects of TTTA are 1-arrows from A, i.e., Obj TTTA = CCC1(A, ∗). A TTTA-arrow
from 1-arrow u1:A → A1 to 1-arrow u2:A → A2 is a pair 4 = (u, δ) as
shown in the inset figure with 1-arrow u:A1 → A2 called the base of 4 , and 2-arrow δ : u1;u⇒ u2 called the
delta of 4 . We will often write 4u,δ : u1⇒ u2.

We define composition of triangles by their tiling: given 4 = (u, δ) : u1 ⇒ u2 and 4′ = (u′, δ′) : u2 ⇒ u3,
composition 4;4′ is the pair (u;u′, δ;u′; δ′). It is easy to check that such composition is associative, and pair
(idA2

, idu2
) is the identity of u2 wrt. this composition. Thus, TTTA is a category.

There are two special subcategories in TTTA, which have all objects that TTTA has, but fewer arrows. The first

one, TTT ⇒A, has arrows with the base being identity. Then triangles degenerates into 2-arrows between 1-arrows

from A, and non-parallel 1-arrows in TTT ⇒A are not connected. The second special category has arrows with the
delta being 2-identity. It is easy to see that its triangle-arrows are nothing but commutative triangles with vertex
A and we denote this category by TTT=A (that is, TTT=A is nothing but the slice category CCC\A).

Any arrow f : A← A′ gives rise to a reindexing functor f∗:TTTA→ TTTA′ in an obvious way by precomposition.

In more detail, an arrow u1:A → ∗ is mapped to f∗(u1)
def
= f ;u1:A′ → ∗, and triangle u1

u,δ- u2 is mapped

to triangle (f ;u1)
u,f ;δ- (f ;u2) with the same base u but a different (composed) delta. Thus, any category CCC is

equipped with a triangle functor TTT:CCC → Catop. We will write TTTCCC when we need to make the carrier category

3in more detail, we have mappings between the heads of the spans, which commutes with their legs

explicit. It is easy to see that reindexing preserves the two special types of arrows so that we also have functors

TTT ⇒:CCC → Catop and TTT=:CCC → Catop.
Finally, suppose F :CCC → DDD is a 2-functor (and hence a 1-functor as well). As any 1-functor preserves 1-

arrow parallelism and composition, a 2-functor F gives rise to a family of functors between triangle categories
FA:TTTCCCA→ TTTDDDB with B = F (A) indexed by objects A∈CCC0. Below we will omit subindex A in FA.

Lax lenses – a brief sketch

Now we can describe a view mechanism as a 2-functor get:MMM → NNN from a 2-category (model space) MMM to a
2-category NNN . This functor gives rise to a family of functors getA : TTTMMMA⇒ TTTNNNB with B = get(A) indexed by
objects A ∈ CCC0. Backward propagation is modelled by two families of mappings inverse to get, both indexed

by models A from MMM . The first family, put⇐A : TTTMMMA ← TTT ⇒NNN B, manages backward propagation of 2-deltas. The
second, put4A: TTTMMMA← TTT=

NNNB, provides lax Putput. However, Putput laxity is special: the comparison is provided
by a pair consisting of a 1-arrow and a 2-arrow, while an ordinary laxity only involves 2-arrows. (Actually we will
see that the target categories of mappings put4A are pyramids — constructs slightly more general than triangles.)
Below we describe these two families in detail.

4.2.2 Backward propagation of 2-deltas: Put and the 2-structure

Suppose for a view B = get(A), we have two parallel updates from B, v1, v2:B → B′, one subsetting the other
via δ : v1 ⇒ v2 (see Fig. 6). It means that v1 creates more new objects in B′ (more accurately, more objects in B′

are considered new according to delta v1). Hence, the backward propagation of v1, update u1:A→ A′1, creates
more new objects on the source side than u2:A→ A′2. Hence, in general, model A′1 will contain more nulls (be
less certain) than model A′2 (see Fig. 1 for a simple example). Hence, there should be a uniquely defined partial
completion update cδ:A

′
1 → A′2 and uniquely defined 2-arrow εδ : u1; cδ ⇒ u2. In its current state, the theory

of partial completions [3] is complex and under construction, and in the present paper we will work in a more
abstract setting and consider cδ to be just an update.

Arity of ⇐-propagation

Given a 2-functor get:MMM → NNN called a view, we define an operation of backward ⇐-propagation put⇐ as the
following three family of operations/mappings.

a) A family of mappings
put⇐0

A : MMM1(A, ∗)←NNN1(B, ∗)

indexed by MMM -objects (as before, B = get(A)). 4

b) A family of mappings put⇐1

A , which assign to each 2-delta δ : v1 ⇒ v2 between parallel view updates v1:B →
B′, v2:B → B′, a mediating update

cδ = put⇐1

A (δ): A′2 ← A′1

as shown in Fig. 6, where ui = put⇐0

A vi, i = 1, 2, 12.
c) A family of mappings put⇐2

A , which assign to each 2-delta δ as above, a mediating 2-delta

εδ = put⇐2

A (δ) : u2 ⇐ (u1; cδ)

– see Fig. 6 again. Thus, the result of backward propagation is a triangle u1
(cδ,εδ)- u2, and it is easy to see

that the three mappings above define a correct graph morphism put⇐A : TTTA← TTT⇐B. In fact, we can specify the
construction above by saying that we have a family of graph morphisms.

Definition 1 (well-behaved put⇐). Given a 2-functor get:MMM → NNN (a view), a backward ⇐-propagation

operation is a family of graph moprhisms put⇐A : TTTMMMA ← TTT ⇒NNN (A.get) indexed by models A from MMM . Below we
write B for A.get.

This family is called well-behaved (wb), if it satisfies the following PutGet law for any model A ∈MMM and any

2-delta δ : v1 ⇒ v2 considered as a triangle in TTT ⇒NNN B:

(PutGet)⇐A (put⇐A δ).get = δ.

4Index 0 means to recall that the operands of the operation are objects/0-cells in the respective triangle categories (although
1-cells in the model space NNN)

A
:get - B

A′3 �

cδ
′

�

u3
•
↖↖ε

δ
′

A′2 �

cδ

�

u2• ↖↖ε
δ

A′1

• u1

? :get - B′

v1 •
?

δ⇒•
?

δ′⇒• v3

?

Figure 6: Put and the 2-structure

In detail, the equality above means

(PutGet)⇐0

A (put⇐0

A v).get = v for any v ∈NNN1(B, ∗);
(PutGet)⇐1

A (put⇐1

A δ).get = idB′ (where B′ = v•1 = v•2);

(PutGet)⇐2

A (put⇐2

A δ).get = δ.

Functoriality of put⇐A

Our examples show that in practice put⇐A has nice functorial properties shown in Fig. 6 (this is, in fact, transitivity
of subsetting). Hence, we can require put⇐A to be a functor without being too restrictive for practical applications.
Moreover, this functor is normally compatible with reindexing.

Definition 2. Operation put⇐ is called very well-behaved (vwb), if it satisfies the following Stability (identity
preservation) and PutPut (2-composition preservation) laws specified below.

For any model A and update v:B → ∗, we require

(Id)⇐1

A put⇐1

A (idv) = idu• , where u = put⇐0

A v and u• is its target model.

(Id)⇐2

A put⇐2

A (idv) = idu, where u = put⇐0

A v.

Below we will encode these two equations as the Stability law for put⇐: for all A∈MMM0,

(Id)⇐A put⇐A (idv) = idu, where u = put⇐0

A v.

We also require, for any model A ∈MMM and two consecutive 2-deltas δ : v1 ⇒ v2, δ′ : v2 ⇒ v3 in TTT ⇒NNN B as shown
in Fig. 6, the following two equations

(PutPut)⇐1

A put⇐1

A (δ; δ′) = put⇐1

A δ ;;; put⇐1

A δ′

(PutPut)⇐2

A put⇐2

A (δ; δ′) = (put⇐2

A δ ;;; put⇐1

A δ′) ;;; put⇐2

A δ′

Below we will encode these two equations as the PutPut law for put⇐: for all A∈MMM0,

(PutPut)⇐A put⇐A (δ; δ′) = put⇐A δ ;;; put⇐A δ
′

Finally, for any A and update B
v- B′, we require the following diagram to commute:

TTTA �
put⇐A TTT ⇒B

TTTA′

u∗

6

� put⇐A′ TTT ⇒B′

v∗

6

(8)

The data above can be compactly specified as follows.

Lemma 1. Given a view 2-functor get:MMM →NNN , a very well-behaved backward⇐-propagation is a (strict) natural

2-transformation put⇐: TTTMMM ← get;TTT ⇒NNN between triangle functors defined above, which satisfies the (PutGet) law.

4.2.3 Backward propagation of update composition: Toward Lax Putput laws

Operation put⇐ provides us with propagation of 1-deltas (updates) and 2-deltas, but does not give us anything
for fixing the problems of strict Putput. This is the goal of operation put4, which provides any composable
pair of view updates, i.e., a commutative triangle on the view side, with a complex (non-commutative) triangle
including a comparison construct on the source side (see triangle AA′′A./ in Fig. 5).

Arity of 4-propagation

Given a 2-functor get:MMM → NNN , we define a backward propagation operation put4 as the following three family
of mappings.

a) A family of mappings

put40

A : MMM1(A, ∗)←NNN1(B, ∗), where B stands for get(A)

indexed byMMM -objects, and satisfying the (PutGet) law. (We may assume that this family is borrowed from put⇐A
above, or define it here independently and later require that operations put40

A and put⇐0

A coincide for all A.)
b) A family of mappings put41

A , which assign to each pair of composable view updates v1:B → B1, v2:B1 → B2

a mediating update
m12 = put41

A (v1, v2): A12 ← A2

as shown in Fig. 7(b), where ui = putAvi, i = 1, 2, 12.
c) A family of mappings put42

A , which assign to each pair of composable view updates v1:B → B1, v2:B1 → B2,
a mediating 2-delta

ε12 = put42

A (v1, v2) : u12 ⇐ (u1;u2);m12

– see Fig. 7(b) again, where b12 = u2;m12; owing to associativity of arrow composition, 2-arrow ε12 can be
interpreted as mediating delta ε12 : u12 ⇐ u1; b12 in the back-side triangle AA1A12.

A

A12
�......•
m12

.........
�..

....
....

....
....

....
....

....
....
u 12• ↖↖

ε 1
2

....
....

....
....

....
....

....
....

...

A2
�.......•

u2

.........

�..
...
...
...
...
...
...
. u

1
;u

2
...
...
...
...
...
...
...

A1

• u1...................?

..................

A
:get - B

A1
:get-

..............
u
1•.............-

B1

�

v 1
•

412

A12
�......................

m12

�..
...
...
...
...
...
...
...
...
.u

12 • ↖↖
ε 1

2

...
...
...
...
...
...
...
...
...
.

�

b12 •

A2

• u1;u2...................?

..................

:get -
�..

....
....

...•
u 2

....
....

....
...

B2

• v12

?

•
v
2 -

(a) (b)

Figure 7: Comparison arrows for Putput

As Fig. 7(b) shows, configuration of arrows produced by put4A can be seen as a pyramid. Figure 7(a) presents
a planar layout of the same diagram, which shows that a pyramid is just a pair of composable triangles in TTTA:
the first is commutative with base u2, and the second is non-commutative with base m12 and delta ε12. The
back side triangle of the pyramid (with base b12) is exactly the composition of the two front triangles. The
construction makes sense for any 2-category CCC.

Definition 3 (pyramid categories). Let CCC be a 2-category, A∈CCC0 and u, u′ ∈ CCC1(A, ∗) are two arrows with the
same source. Like triangles, pyramids are special arrows between such arrows, to wit. A pyramid π : u⇒ u′ is a
triple (b1, b2, ε) with b1:u• → X, b2:X → u′

•
for some object X∈CCC0 called the first and second base of π resp.,

and ε : u; b1; b2 ⇒ u′ called the delta of π.
Given two composable pyramids, π = (b1, b2, ε) : u⇒ u′ and π′ = (b′1, b

′
2, ε
′) : u′ ⇒ u′′, their composition is a

pyramid π′′ = (b′′1 , b
′′
2 , ε
′′) : u⇒ u′′ with b′′1 = b1; b2; b′1, b′′2 = b′2, and ε′′ = ε; b′1; b′2; ε′. For any u ∈ CCC1(A, ∗), the

identity pyramid u⇒u is the triple (idu• , idu• , idu).5

5We have defined composition by taking X′′ = X′, but there are two other natural ways with X′′ = X or X′′ = u′•. The one
we have chosen works better for our further considerations.

A

A1

u1

?

A12
�

m12
•

�

u 1
2
• ↖↖

ε 1
2

�

b 12

A1.2

u2

?

A123
� •
m3

�

u 12
3

• ↖↖
ε 3

�

b3

A12.3

�
u

1
2

3

A1.2.3

u3

?
•
m23

- A1.23 •
m1

-

u
2
3•↖↖
ε

2
3

-

•b
23

-

A123

u
123•

↖↖
ε

1

-

•
b
1

-

B

B1 412

�

v 1
•

B1

v
1•
-

43 41

B2

v2 •

?�

•
v 1

2

423 B2

• v2

?

B3

v123

?�

v 2
3
•

�

•
v 3

•
v
3

-

(a) (b)

Figure 8: Functroiality of put4 or PutPutPut laws

It is straightforward to check that composition is associative and identity pyramids are units. Hence, for any
2-category CCC and any object A ∈ CCC0, we have a category PPPCCCA of pyramids over A. A functorial arrangement of
the construction can be done in parallel with that for triangle categories in Sect. 4.2.1

It’s easy to see that the three mappings put4iA , i = 0, 1, 2 above make a correct graph morphism put4A: PPPMMMA←
TTT=
NNNB (below we will omit the model spaces subindexes and write put4A: PPPA← TTT=B). In fact, we can specify the

construction of these mappings by saying that we have a family of graph morphisms.

Definition 4 (well-behaved put4). Given a view 2-functor get:MMM →NNN , a backward 4-propagation is a family
of graph morphisms put4A: PPPA← TTT=B indexed by models A from MMM (as before, we write B for A.get).

This family is called well-behaved (wb), if it satisfies the following PutGet law for any model A ∈MMM and any
commutative triangle v1 ;;; v2 = v12 in TTT=B denoted by 412:

(PutGet)4A (put4A412).getA = 412 (where getA is the triangle functor generated by get—see Sect. 4.2.1).
In detail, the equality above means (Fig. 7(b) illustrates the incidence conditions)

(PutGet)40

A (put40

A v).get = v for any v ∈NNN1(B, ∗);
(PutGet)41

A (put41

A 412).get = idB2 (where B2 = v•2);

(PutGet)42

A (put42

A 412).get = idv12 (where v12 = v1; v2).

Note that equations (PutGet)⇐0

A and (PutGet)40

A coincide: they both state the PutGet law for updates (i.e.,
objects in the triangle categories).

Functoriality of put4 (this is a long TR version vs. a short paragraph in the paper)

It is clear that operation put4 maps identity triangles (v2 = idB1
) to identity, but their compatibility with

composition is much more intricate than for put⇐.
The left half of the diagram in Fig. 8(b) presents two composable commutative triangles and in the category

TTT=B: 412 : v1 ⇒ v12 and 43 : v12 ⇒ v123, where v12 = v1; v2 and v123 = v1; v2; v3. Their composition is the
triangle 41 : v1 ⇒ v123 with the base v2; v3, which is shown on the right hand side of the arrow v123. Thus,
412;43 = 41.

Functoriality we are going to explore is about relationships between two mediating constructs: composition
of mediations put4A412 ;;; put4A43 on the source side, and the mediation of the composition put4A41 on the view
side, i.e., to what extent Putput holds for the triangles-to-pyramids operation put4A. (Note that associativity
of composition is essential here as it ensures the same arrow v123 for both sides of the diagram.) In this
investigation, we will also use the triangle 423, but this triangle is an arrow of category TTT=B1 rather than TTT=B
and hence triangles 41 and 423 are not composable. However, they are connected via reindexing along arrow
v1: 41 = v∗1(423).

There are four update paths (sequences of consecutive arrows) px from B to B3 as shown in Fig. 8(b):

(i) three step path p1.2.3: B
v1
•- B1

v2
•- B2

v3
•- B3

(ii) (step+jump) path p1.23: B
v1
•- B1

v23=v2;v3
• - B3

(iii) (jump+step) path p12.3: B
v12=v1;v2
• - B2

v3
•- B3

(iv) one big jump path p123: B
v123=v1;v2;v3

• - B3

Actually we could have two big jumps, v1; v23 and v12; v3, but associativity of composition makes them equal,
and either of these can be taken as a definition of the only big jump v123 = v1; v2; v3.

Backward update propagation maps these four paths to the respective four paths on the source side, but as
it breaks equality of arrows and even their parallelism, on the source side we have, in general, four different big
jumps from model A, each having its own path leading to its own end model Ax with x = 1.2.3, 1.23, 12.3, 123
as shown in the diagram in Fig. 8(a) (where two nodes A123 denote the same model, while all other nodes refer
to different models). The diagram accurately presents the results of applying operations put4A to all arrows in
Fig. 8(b); the (PutGet) laws are respected by placing the corresponding models on the same horizontal level.
Thus, ui = put40

A (vi) for i = 1, 2, 3, 12, 123. Further, u23 = put40

A1
(v23), and u12

3 = put40

A12
(v3) (note how the index

of the operation changes).
Indexes of mediation constructs correspond to triangle indexes: m12 = put41

A (412), m3 = put41

A (43), m1 =
put41

A (41), and m23 = put41

A1
(423). Similarly, for 2-deltas εi produced by operations put42

A,A1
for i = 12, 3, 1, 23.

Similarly for bisectors, bi = uj ;mi for i = 12, 3, 1, 23, whose index is the index of the second component –
mediator m. The left half of the diagram in Fig. 8(a) presents the comparison/mediation between the entire
composed update u123 and stepwise propagation u1;u2;u3 performed along the left schema of Fig. 8(b). Similarly,
the right half of the diagram in Fig. 8(a) presents the comparison/mediation between the same entire composed
update u123 and stepwise propagation u1;u2;u3 performed along the right schema of Fig. 8(b). Our central
question is whether these two mediations are equal either strictly (then we say that we have strict lax Putput),
or up to isomorphisms (a sort of “associator” between the two mediations that makes a weak lax Putput), or
perhaps, one mediation should be mediated to the other (lax lax Putput), or perhaps these two mediations are
not comparable. Overall, this seems to be a question around some sort of coherence conditions. Whether these
conditions should be imposed is a matter of analyzing examples and we leave it for future work.

The following results is important.

Lemma 2. Suppose that graph mapping put4A: PPPA← TTT=B preserves composition, i.e., put4A is a functor. Then
the following equations hold:

A12.3 = A1.23 (9)

u2;m12;u3 = u23 (10)

m3 = m1 (11)

ε12; b3; ε3 = ε1 (12)

which can be interpreted as equivalence of the left and right halfs of Fig. 8(a), and we could consider the diagram
in Fig. 8(a) as a sort of associator for mapping put4.

Proof. For diagram Fig. 8(b), which states 412;43 = 41, composition preservation means
put4A(412); put4A(43) = put4A(41). Now the equations above follow from the definition of pyramid composi-
tion Def. 3.

The results above seem plausible, but in general the notion of a pyramid category, and resp. the functor
put4A: PPPA← TTT=B, don’t behave quite well. For example, this functor is not compatible with reindexing and the
diagram

PPPA �
put4A TTT=B

PPPA′

u∗

6

�
put4A′ TTT=B′

v∗

6

(13)

where u:A→ A′ and u.get = v, doesn’t commute.

Discussion

The pyramid construct is rather ad hoc, and should be replaced with a standard categorical pattern still to be
found. Perhaps, a useful first step would be to fix asymmetry of Fig. 8(b): while triangles 412 and 43 are
composable, triangles 41 and 423 are not as they are from two different triangle categories. However, we could
make the right two triangles composable if, following to Johnston and Rosebrugh [12], we divide updates into
inserts (going from B) and deletes (directed into B), and would consider a pair of operations, left put putL acting
on inserts, and right put putR acting on deletes. Then we have two triangle categories at every node – for deletes
(arrows into) and for inserts (arrows from), and the right half of Fig. 8(b) shows two composable triangles in the
triangle category for arrows into B3. Perhaps, this setting would simplify and clarify the categorical machinery
underlying ad hoc pyramids.

Another clue is an observation that the mediating constructs specified in Fig. 8(a) may be seen as a sort of
associators. Indeed, as it was shown in [12], Putput is about the associativity requirement for the corresponding
KZ-monad.

Summary

We can define a well-behaved lax (asymmetric delta) lens from a 2-category MMM to 2-category NNN as a triple
(get, put4, put⇐), in which get:MMM → NNN is a 2-functor, and put4, put⇐ are families of mappings inverse to get
in the sense specified above. The two families are required to be mutually compatible in that mappings put40

A

and put⇐0

A , which propagate view updates to the source side, are equal for all A∈MMM0. Other components of the
two put families are different and play different roles: put41 and put42 provide mediation arrows to ensure lax
Putput, while put⇐1 and put⇐2 ensure accurate propagation of 2-deltas also subject to a lax discipline. In a
proper categorical framework, the two operations can hopefully be integrated into one 2-categorical construct
still to be found.

We call a lax lens very well-behaved if both put4 and put⇐ enjoy functoriality wrt. triangle and pyramid
categories involved, which is necessary for coherent working of the 2-category machinery. A clean categorical
elaboration of put4’s functoriality is also an important future work.

5 Related work and historical remarks: instead of conclusion

Overall, the present paper continues Johnson and Rosebrugh’s program (stated very early in several talks,
lectures and recently in [13]) of building bx foundations by progressing from poor to richer categories employed
for modelling model spaces. In the sequence of Sets (state-based lenses), Posets (Hegner’s framework [11]), Cats
(delta-lenses), 2-Cats appear as a very natural next step.

More specifically, Putput problems were noticed as early as in the first classical lens papers [9, 14], and
continued to be remarked later, e.g., in [15]. In [8], the relational update composition was proposed as a means
to mitigate Putput problems, but it was also noticed that it does not solve all problems. The first investigation of
Putput based on solid mathematical foundations was undertaken in [12], where (as mentioned in the introduction)
Johnson and Rosebrugh found sufficient and necessary conditions for the relational (they say mixed) Putput to
hold. Their analysis seems to be the maximum of what could be done for Putput in the strict (i.e., equality-
based) setting. That paper can be seen as the first chapter in the long Putput story (with the previous results
classified as prehistorical). The present paper owns to paper [12] the categorical approach to Putput, attention
to details, and the very genre of a Putput story. Hopefully, it begins its second – lax – chapter.

References

[1] A. Anjorin and J. Gibbons, editors. Proceedings of the 5th International Workshop on Bidirectional Trans-
formations, Bx 2016, co-located with The European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 8, 2016, volume 1571 of CEUR Workshop Proceedings.
CEUR-WS.org, 2016.

[2] Z. Diskin. Model Synchronization: Mappings, Tiles, and Categories. In J. M. Fernandes, R. Lämmel,
J. Visser, and J. Saraiva, editors, GTTSE, volume 6491 of Lecture Notes in Computer Science, pages 92–
165. Springer, 2009.

[3] Z. Diskin. Asymmetric Delta-Lenses with Uncertainty: Towards a Formal Framework for Flexible BX.
Technical Report GSDLab-TR 2016-03-01, University of Waterloo, 2016. http://gsd.uwaterloo.ca/node/660.

[4] Z. Diskin. Compositionality of update propagation: Lax Putput. Technical Report GSDLab-TR 2017-02-28,
McMaster University, 2017. http://gsd.uwaterloo.ca/node/691.

[5] Z. Diskin, R. Eramo, A. Pierantonio, and K. Czarnecki. Incorporating uncertainty into bidirectional model
transformations and their delta-lens formalization. In Anjorin and Gibbons [1], pages 15–31.

[6] Z. Diskin, H. Gholizadeh, A. Wider, and K. Czarnecki. A three-dimensional taxonomy for bidirectional model
synchronization. Journal of System and Software, 2015. In Press. Online at doi:10.1016/j.jss.2015.06.003.

[7] Z. Diskin, T. Maibaum, and K. Czarnecki. Intermodeling, queries, and kleisli categories. In Fundamental
Approaches to Software Engineering, pages 163–177. Springer, 2012.

[8] Z. Diskin, Y. Xiong, and K. Czarnecki. From State- to Delta-Based Bidirectional Model Transformations:
the Asymmetric Case. Journal of Object Technology, 10:6: 1–25, 2011.

[9] J. Foster, M. Greenwald, J. Moore, B. Pierce, and A. Schmitt. Combinators for bi-directional tree transfor-
mations: a linguistic approach to the view update problem. In POPL, pages 233–246, 2005.

[10] H. Gholizadeh, Z. Diskin, S. Kokaly, and T. Maibaum. Analysis of source-to-target model transformations
in quest. In J. Dingel, S. Kokaly, L. Lucio, R. Salay, and H. Vangheluwe, editors, Proceedings of the 4th
Workshop on the Analysis of Model Transformations co-located with the 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2015), Ottawa, Canada, September 28, 2015.,
volume 1500 of CEUR Workshop Proceedings, pages 46–55. CEUR-WS.org, 2015.

[11] S. J. Hegner. An order-based theory of updates for closed database views. Ann. Math. Artif. Intell.,
40(1-2):63–125, 2004.

[12] M. Johnson and R. D. Rosebrugh. Lens put-put laws: monotonic and mixed. ECEASST, 49, 2012.

[13] M. Johnson and R. D. Rosebrugh. Unifying set-based, delta-based and edit-based lenses. In 5th Int.
Workshop on Bidirectional Transformations, Bx 2016, volume 1571 of CEUR Workshop Proceedings, 2016.

[14] P. Stevens. Bidirectional model transformations in qvt: semantic issues and open questions. Software &
Systems Modeling, 9(1):7–20, 2010.

[15] Y. Xiong, H. Song, Z. Hu, and M. Takeichi. Synchronizing concurrent model updates based on bidirectional
transformation. Software and System Modeling, 12(1):89–104, 2013.

