
Appendix

Efficiency of Projectional Editing: A Controlled Experiment

Thorsten Berger, Markus
Völter, Hans Peter Jensen, Taweesap Dangprasert, Janet Siegmund

Abstract
This appendix contains details about our preparatory sur-
vey, the experimental material (incl. the task descrip-
tions), and statistics not in the main paper. On publica-
tion of the main paper, this appendix will be published as
a technical report.

Contents

1 Survey 1
1.1 Questionnaire Design . 1
1.2 Analysis . 2
1.3 Results . 2

2 Experiment Material 6
2.1 Repositories . 6
2.2 Training Session Handout . 6
2.3 Task Descriptions Handout for Groups Proj, ProjE . 9
2.4 Task Descriptions Handout for Group Par . 13

3 Detailed Additional Statistics 17
3.1 Basic Editing and Errors . 17
3.2 Modification and Refactoring Operations . 19

1 Survey

The first phase of our study aimed at obtaining preliminary insights into perceived benefits and chal-
lenges of using a projectional editor. To this end, we surveyed professional developers using an online
questionnaire. We used the results to formulate research questions, corresponding hypotheses, and to
design experiment tasks.

1.1 Questionnaire Design

The questionnaire comprised 31 questions. They elicit the background of participants (e.g., previous
programming experience, knowledge of MDD techniques, language-design experience); participants’
perceptions of using the editor, including advantages and disadvantages compared to parser-based edi-
tors; and detailed experiences on source-code editing.

1

We used a mix of closed and open-text questions. The closed ones have a five-point Likert scale [1]
ranging from strongly agree over neutral to strongly disagree. The open-text questions explore detailed
editing aspects that participants found either positive or negative. Therefore, every Likert-scale question
was followed by an open-text one. For instance, after requesting participants to state to which degree
they agree with the statement that “it was easy to learn and understand the facilities of MPS”, we asked
them “which facilities were easier and which were harder to learn.”

Consequently, the questionnaire was relatively long, taking around 20 minutes to complete. This
length had no negative impact on the recruitment, since we invited a controlled sample of participants
who are our industry contacts and known to us for having worked with MPS. The invitees were encour-
aged to forward the invitation.

1.2 Analysis

We analyzed the survey quantitatively (Likert-scale questions) and qualitatively (open-text questions).
For the Likert-scale questions, we mainly used diagrams, while we analyzed the open-text questions
with a grounded-theory-like approach [2, 3] by using open coding [4] to identify editing-related aspects,
such as specific facilities of the editor, an experienced peculiarity, or a specific behavior that participants
perceived as positive or negative when working with the editor. Identification of these aspects was based
on reaching consensus among at least three authors. For each identified aspect, we calculated a ratio of
positive and negative statements about it in the responses—to identify tendencies towards a positive or
negative perception by the participants.

1.3 Results

We received 21 responses, with 19 of the participants also providing open-text answers. From these,
we identified 49 editing-related aspects, which we structured into seven categories: basic editing, er-
rors, AST conformance, navigation, refactoring, language design, and general. We removed aspects
not directly related to projectional editing, such as CamelCase navigation, IDE user interface (“MPS is
rather logically structured”), and all aspects from the categories navigation and language design. As
a result, we obtain 18 aspects belonging to four categories: basic editing (10 aspects, sub-divided into
editing operations and other aspects), errors (3 aspects), AST conformance (2 aspects), and refactoring
(2 aspects).

In the following, we first present general results about efficiency and productivity of MPS and then
discuss the identified aspects.

1.3.1 Overall Efficiency

Most developers agree that they can write code as fast as with a conventional, parser-based IDE (median:
2; min/max: 1/5). Only one developer strongly disagrees, but explains that he is a proficient Emacs user:
“Years of investment in Emacs are hard to beat.”

One user also disagrees, but indicates that this is because he is a novice MPS user. A second de-
veloper who disagrees states that while code entering may not be that efficient, it is less error-prone,
increasing overall efficiency. The remaining participants state that after getting used to the different style
of entering code, there is no difference in editing efficiency to a conventional editor.

We also asked about the general perception of productivity with MPS. Most developers are positive in
this respect (median: 2; min/max: 1/5). While 28% express a neutral opinion, 40% agree, and 28% even
strongly agree. Only one participant expressed strong disagreement. This participant also faced intensive
learning effort and stated that becoming familiar with the environment was difficult, mainly since all of
MPS’ concepts were completely new to him. In contrast, he strongly agrees that he can write code
as fast as with a parser-based editor, arguing that the code-completion facilities significantly contribute
to the productivity. We conclude that after a learning phase, MPS lets developers work efficiently and
productively.

2

0%

20%

0%

20%

10%

5%

5%

0%

90%

75%

95%

80%

Cloning (copy/paste)

Selection

Deletion

Insertion (code completion)

0 25 50 75 100
Percentage

0%

0%

0%

5%

0%

5%

15%

10%

10%

5%

5%

0%

85%

90%

90%

90%

95%

95%

Expression editing

Commenting

Text import

Cursor positioning

Intentions (quick fixes)

Automatic code formatting

0 25 50 75 100
Percentage

response positive not mentioned negative

Figure 1: Perception of basic-editing operations (top) and other related aspects (bottom)

Users also see the bigger picture: All participants agree that they benefit from the modular language
support of MPS (median: 1, min/max: 1/2), confirming one of its key benefits: “Language composition
is the main strength of MPS.”

Finally, the flexible notations provide a considerable benefit for developers (median: 2, min/max:
1/3), especially for integrating stakeholders from different domains: “My DSL users are business people,
not IT people. Being able to use mathematical notations for Sum and Product expressions, fraction bars
for division, tabular notations for test cases is crucial.”

1.3.2 Basic Editing

This category summarizes responses about the fundamental editing of code. Fig. 1 presents our par-
ticipants’ perception of basic-editing operations (top) and of other mentioned aspects (bottom) in this
category.

Basic-Editing Operations. Comments on Insertion—the ability to efficiently enter code—are domi-
nated by the code-completion facilities of MPS, which are seen as a strong advantage: “Code completion
and working directly in AST make things easier.” In contrast, Deletion is criticized when mentioned. As
it does not operate on a character-by-character basis, it often deletes too much code.

The Selection of code (i.e., AST nodes) is only seen positively by our participants, despite a behavior
that is different from parser-based editors: “Selection of program fragments happens based on program
structure, not on cursor positions.”

Finally, Cloning is perceived negatively, but the corresponding comments show that this shortcoming
is related to the enforced AST conformance (discussed shortly in Sec. 1.3.4): “Things look like text but
are not [real] text (one cannot copy/paste some piece of code in another place where it would make
sense).” Here, the participant emphasizes that copied code cannot be pasted into all places where it
would fit syntactically, but not based on the AST.

Other Basic-Editing-Related Aspects. Most users are satisfied with the modern editing facilities, such
as automatic code formatting and intentions (little user-initiated in-place program transformations, also
known as quick fixes in other IDEs). On the negative side, participants complain about unpredictable
cursor positions and restrictions on arbitrary code commenting: “The editing of text is not straightfor-
ward, but also not too difficult. The more this will be improved (delete operations, cursor positioning,
comment editing), the less this point comes into picture. I feel that in future it should be only neces-

3

0%

15%

5%

15%

10%

0%

85%

75%

95%

Error messages

Error handling

Error highlighting

0 25 50 75 100
Percentage

response positive not mentioned negative

Figure 2: Perception of error-related aspects

sary to know about Ctrl+space and Alt+enter.” This comment also emphasizes that code completion
(’Ctrl+Space’) and intentions (’Alt+Enter’) could potentially be the main editing operations relevant to
projectional editing.

Another shortcoming expressed by two participants is the import of code (i.e., copy/paste) from
sources outside of MPS. Finally, two participants explicitly point out the problem of editing expressions,
which is easier by rewriting the respective code: “For changing existing model elements (e.g. putting
parentheses around a part of an expression in mbeddr) [...] it is often less work to just remove the whole
part you want to change and redo it, rather than trying to change it in place.”

1.3.3 Errors

This category comprises mistakes and unintended editing results that require correction.
In a Likert-scale question, we explicitly asked about participants’ agreement with the statement “With

MPS, I make less errors while programming.” The median of responses agrees with this statement. Those
who agree or strongly agree, state that the error prevention is related to the enforcement of valid ASTs:
“MPS catches or prevents most syntactical or spelling mistakes. A well designed language with its
type definitions prevents or catches more complicated mistakes. Only mistakes at a really execution or
algorithmic level slip through.”

One participant agrees, but emphasizes the dilemma of not having hard empirical data: “I tend to
agree [...] although I am not sure how to quantify this.” Interestingly, 42 % of our participants express
only a neutral opinion about error reduction. Some explain that any such achieved via projectional editing
is minor compared to semantic/logical errors in the code: “The main type of errors [is] logical errors,
which are not influenced by the IDE used.” Others point out that error reduction is tied closely to the
language design, and is less a conceptional problem of projectional editing: “Depends on the DSL and
how good it is implemented.” Finally, one participant disagrees and another one even strongly, since they
did not experience any error reduction at all: “I make the same amount of errors.”

Analyzing all open-text responses led to three further aspects beyond error reduction, whose per-
ception is shown in Fig. 2. Participants like how the projectional editor highlights and handles errors.
Although hardly generalizable to projectional editing, some participants (15 %) state that error mes-
sages are hard to interpret and not very helpful when fixing mistakes. While most of these messages
are language-specific (violation of metamodel constraints), MPS in fact has some difficult to understand
built-in error messages that cannot be changed by the user. These messages reflect the implementation
of MPS instead of end-user-relevant concerns. Examples include “Abstract concept instance detected”
or “Not in search scope”.

1.3.4 AST Conformance

This category includes all statements about the enforced conformance of programs to a correct AST at
any time.

In a Likert-scale question, we asked participants about their agreement with the statement “I like that
I can only produce structurally correct programs (valid ASTs).” The median of responses agrees. One

4

15%

10%

30%

5%

55%

85%

AST Conformance

Type checking

0 25 50 75 100
Percentage

Response positive not mentioned negative

Figure 3: Perception of conformance-related aspects

strongly agreeing participant explains: “This helps a lot. If you need [...] incomplete trees, you need to
think about your language design and make it explicitly possible. [...] You can actually create incorrect
trees with many red errors [...].”

This comment also describes the problem of references between nodes (e.g., references to variables,
methods or types) in the tree. Such references can be unbound—for instance, when the target does not
(yet) exist. Such inconsistencies need to be resolved at least before persisting the program, except if the
language explicitly supports dangling references, for instance with placeholders (node proxies). In other
words, allowing structural inconsistencies is a responsibility of the language developer, not the user in
projectional editing.

Participants’ open-text responses reveal two further aspects they are concerned about: enforced AST
conformance and type checking, as shown in Fig. 3.

Six participants elaborated explicitly on the aspect that AST conformance is always enforced. Most
comments were negative; many respondents would like to—at least temporarily—violate AST rules
during the development: “Invalid ASTs are also necessary during development.” Yet, three participants
(15 %) found the enforced AST conformance very helpful. For instance, two appreciate that the program
is “correct by construction”, one likes the “syntax-directed editing”, and another one elaborates: “At
some point, the brain automatically switches itself off from ensuring all this and instead focuses more on
logic or actual intent of the program.”

The error reduction discussed before is mainly attributed to the enforced AST conformance. Most
importantly, respondents emphasize the absence of “syntactical or spelling mistakes” (typos), and that:
“Errors can be found at edit time instead of compile time or (worse) runtime.” Yet, two respondents
do not see the permanent AST conformance as a benefit over parser-based editors. One explains that
“Syntactical correctness is easy anyway.” Another participant elaborates: “If the compiler is incremental
and fast enough (like Eclipse’s Java compiler), you get immediate feedback on syntax errors, so this is
not a big advantage.”

In summary, most participants consider the enforced AST conformance not as a benefit in itself.
However, many are willing to accept it as a side-effect of projectional editing, which provides tangible
advantages in other respects (notation, language extensibility). The main problem seems to be the fact
that references can only be created after the reference target has been created, unless the language devel-
oper expressively creates means to allow otherwise—such as quick fixes to create targets on demand or
proxies that support “dangling” references.

1.3.5 Refactoring

This category comprises aspects related to our participants’ experiences with refactoring code.
When mentioning refactoring, our participants express a solely positive experience—for instance,

confirming that “Renaming/refactoring always work.” This is owed to the fact that references between
program elements are immediately bound during editing (using code-completion) [5], and changes to the
name of the refernce target are automatically and immediately propagated to references.

We also identified comments on moving code, which is often used for refactoring or extending code.
Our participants expressed ambivalent experiences—for instance, that “The lack of freedom to move

5

5%

15%

5%

0%

90%

85%

Moving code

Refactoring

0 25 50 75 100
Percentage

Response positive not mentioned negative

Figure 4: Perception of refactoring-related aspects

around is sometimes restricting” or that “Moving code fragments with Ctrl+Shift arrow up/down and
automatic code formatting is also very important/convenient.”

2 Experiment Material

This section contains a description of (and pointers to) the materials used for the experiment. Recall that
we provided a training session, whose material is also provided below, before the actual experiment.

2.1 Repositories

The experiment groups had an installation of MPS and Eclipse CDT with fully setup projects: one for the
training session (“Hello World”) and one for the actual experiment session (“Problem”). The projects for
MPS, used by the beginners (Proj) and experts (ProjE) with a projectional editor, are available in the ZIP
file repo-Proj,ProjE.zip. Note that we did not provide a dedicated training session (project “Hello
World”) for the experts. The projects for Eclipse CDT are contained in the ZIP file repo-Par.zip. In
both repos, note that the tasks were enumerated beginning with 0, i.e., task 1 in the paper is contained
in the problem0 folder. Also note that problem4 and problem5 were solved by our participants, but did
not become part of our analysis, since comparing graphical editing (e.g., decision table) in MPS with
text editing in Eclipse (e.g., large switch statement) was beyond the scope of our present analysis. Since
these two tasks appeared at the end of the experiment, they did not influence the previous tasks (internal
validity).

2.2 Training Session Handout

Before the experiment, we provided a 45-minute training session for the groups using a projectional
editor (Proj, ProjE). The training session was described on the following handout.

6

1

Learning
In this phase we would like you to get familiar with the projectional editor.

We have created a small project called PE. Inside this project you should find two solutions: one called
HelloWorld and one called Problems. In this phase you are only to work with the HelloWorld solution.
Inside this solution we have placed a model called Main. Under this model you will be performing all of
your tasks for the learning part.

Let us start with the usual HelloWorld program. The easiest way to do this is to use the included
functionality provided by mbeddr. In the Logical View make sure you have selected the Main model. Now
go to the code menu item and select the mbeddr: Make Hello World.

Under the Main model, you should now find three new items:

BuildConfiguration This specifies which modules should be compiled into an executable or library, as
well as other aspects related to creating an executable. You will need to edit this later.

HelloWorld is an implementation module. Modules act as namespaces and as the unit of encapsulation.
You are requested to insert C code and edit such modules as we go along.

TypeSizeConfiguration This specifies the sizes of the primitive types (such as int or long) for the
particular target platform. The one you have created is the mbeddr C default configuration. If you have
two TypeSizeConfigurations you can delete the bottom one, as we will only need one. You will not need
to edit this during this session.

Open the HelloWorld module and confirm that a main function has been generated. Do not worry about
the messages. It is a special language extension for logging.

Before you can run it, we need to create a run configuration. Go to Run → Edit Configurations found in
the menu bar. In the Run/Debug Configurations window that appears, select the green plus-sign in the
upper left corner. Be sure to select the option Mbeddr Binary.

2

In the options pane to the right, name it HelloWorld. In the executable, use the ellipses (...) to select the
HelloWorld Implementation module. Use the default values for the remaining options. When you are
done, click OK.

We are now ready to run our HelloWorld program. Use the shortcut Shift + F10 to run it. Confirm that the
console prints out Hello, World!.

Now that we have a working program, let us start with some basic expressions. In the logical view, select
the Expressions module. To get a feel for the editor, let us create a basic expression, write a test, and run
it as part of our Hello World program.

In the Expression module, place the cursor in the body of the module under the horizontal black line.
Notice that you can move around in the module using the shortcuts Tab or Shift + Tab instead of using
the mouse.

Note that in a projectional editor, code completion (Ctrl + Space) is heavily used. Be sure to make a note
of this, as writing words out character by character might not produce a valid program in certain contexts.
The word will be marked in a red color to signal that it is not yet valid. If you do not already use this
shortcut (Ctrl + Space) extensively, be sure to try and do so as part of this experiment session, as it is a
core action when working with a projectional editor such as MPS.

Now, try to write int and invoke code completion from there. You should be presented with a set of
possible options. Choose the smallest integer representation int8 (this is mapped to a char in the
TypeSizeConfiguration), which is fine in our small example. Press Tab or Right Arrow to navigate to the
variable name and name it i. Now, in turn, press: =, 1, + and 2. You should now have an expression that
looks like this:

Now, try to place the cursor directly after 2, but before the semicolon. Press Backspace. Notice only the
2 is deleted. Now, place your cursor after the semicolon and press Backspace. Notice how the entire
declaration is deleted (The reason for this is that you are deleting the function node, and thus the entire
subtree under it is deleted). Thus, be sure to pay attention to the cursor position when doing delete
actions. Undo the deletion by using the undo action (Ctrl + Z). In fact, you can always use undo action
(Ctrl + Z) if you get in trouble.

Let us define a function that returns the result from this declaration.

3

Start by writing out the return type, which is int8. Then write the name of the function, in this case Add,
and finally type an opening parenthesis. This should give you a function. Afterwards, Tab or use Arrow
Keys to the body of the function and add the return statement, which should be 1 + 2.

To make sure that the function really does return 3 as we expect, let us create a testcase for it. For this
we will use the provided language extension in mbeddr for testing. Place your cursor in the expression
module after the add() function. Write test and do code completion from there. You should get a testcase
constructed for you.

Now, in turn, do the following:

1. Name it testAdd,
2. Tab to the body,
3. Write assert and invoke code completion
4. Select the option that is just called assert
5. In the <no expr> tag, type add and do code completion, if necessary.
6. Press Right Arrow to move behind the right-parenthesis.
7. Type ==.
8. Type 3.

You should now have a test case that looks like this:

In order to run this test case, we need to add it to the Hello World program we created earlier. Start by
navigating to the HelloWorld module. Inside the top of this module, locate the import nothing keywords
and use code completion(you may have to invoke twice) to replace nothing by Expressions. Now, go to
the return statement in the main function and delete the 0; instead, write test. If needed, invoke code
completion and select the test in the options available.

Selection is different in a projectional editor. For instance, you cannot select blocks of code using the
mouse. Instead, you have several options available to perform selections.

You can select along the tree using the Ctrl + Up/Down shortcut. The use of this shortcut
expands/shrinks block selection region. The example below illustrates continuous presses of the Ctrl +
Up shortcut (be sure to notice the initial cursor placement).

A similar shortcut is Ctrl + W, which successively selects increasing code blocks.

You can also select siblings using the Shift + Up/Down shortcut. Using this shortcut you can extend the
selected region to siblings. The example below illustrates two Shift + Up followed by two Shift + Down
presses(again, notice the initial cursor placement).

4

Another core feature in the editor is the Show Intention action (Alt + Enter). In some editors this is also
known as Quick Fix. In contrast to code completion, intentions can perform transformations on the
program (e.g., to add additional code to your program), whereas code completion can only present the
options currently available. The type of intention that can be invoked is context-specific.

Let us use the Show Intention action (Alt + Enter) to add all the visible test cases that is available from
the main function. Make sure your cursor is placed on the test keyword that we wrote as the return value
before. Now, use the Show Intention action (Alt + Enter) and select the option called Include all visible
Test Cases.

As the last thing, go the the BuildConfiguration. Place your cursor inside the Binaries section on the red
error line and show intentions (Alt + Enter). Select the Add Missing modules option.

When you are done, run your HelloWorld Program again (Shift + F10). In the console verify that Hello
World is still being printing, but also that our testcase is run as well.

We have now introduced a set of common operations and a set of Shortcuts to help you in your work with
the editor. All of the mentioned shortcuts is available from the cheat sheet provided.

7

5

Refactoring
We have now gone through a few simple tasks when working with editors. Now, let us proceed to some
common refactorings. Recall that refactorings are changes to the code that do not alter its behaviour.

Start by navigating to the HelloWorld module. Inside the top of this module, locate the imports keyword
and add all the following modules: ExtractVariable, Inline, ModuleA, ModuleB, and RenameMe. You add
a new line by pressing Enter and then either type out the module name or use code completion to fill in a
module.

Furthermore, use the Show Intention action (Alt + Enter) to add all the now visible test cases. Select the
option called Include all visible Test Cases. Recall your cursor should be placed on the test keyword

Then, as we did before, go the the BuildConfiguration. Place your cursor inside the Binaries section
and show intentions (Alt + Enter). Select the Add Missing modules option. Confirm that all the five
modules mentioned before are added.

Rename
Perhaps the most common refactoring is a rename refactoring. Rename refactorings allow you to rename
symbols, automatically correcting all references in the code. In the logical view, select the Refactoring
folder and open the RenameMe module.

First of all, notice that the name of the module is spelled incorrectly. Try correcting it directly without using
the Rename refactoring. Notice that this works without introducing errors.

Now consider the table below. Refactor the left code fragment (Pre-refactor column) to the right code
fragment (Post-refactor column).

Pre-refactor Post-refactor

string x = "ACKS-RAY";

string y() {
 return "YANG-KEY";
} y (function)

exported testcase testRename {
 assert(0) x == "ACKS-RAY";
 assert(1) y() == "YANG-KEY";
} testRename(test case)

string xray = "ACKS-RAY";

string yankee() {
 return "YANG-KEY";
} yankee (function)

exported testcase testRename {
 assert(0) xray == "ACKS-RAY";
 assert(1) yankee() == "YANG-KEY";
} testRename(test case)

Observe how the name changes instantly across its uses. Confirm that your changes did not break
anything by running the test case in the module.

6

Extract Variable
Another very common refactoring is to extract a variable. The Extract Variable refactoring puts the result
of the selected expression into a variable. It declares a new variable and uses the expression as an
initializer. The original expression is replaced with the new variable. Our example is of the form Extract
Local Variable. In the logical view, open the ExtractVariable module.

Now consider the table below. Refactor the three left code fragment (Pre-refactor column) to the right
code fragment (Post-refactor column).

You can find this refactoring in the context menu under refactorings. The menu is context sensitive, so
make sure that you place the cursor at the correct position.

Pre-refactor Post-refactor

int8 preExpression1() {
 return 42;
} preExpression1 (function)

int8 postExpression1() {
 int8 MeaningfullConstant = 42;
 return MeaningfullConstant;
} postExpression1 (function)

int8 preExpression3() {
 int8 c = 3 + 2 + 1;
 return c;
} preExpression3 (function)

int8 postExpressions23() {
 int8 a = 1;
 int8 b = 2 + a;
 int8 c = 3 + b;
 return c;
} postExpressions23 (function)

Confirm that your changes did not break anything by running the test case (Shift + F10) in the module.

7

Inline
The Inline Variable refactoring replaces redundant variable usage with its initializer. This refactoring is
opposite to the Extract Variable from the previous section. In the logical view, open the ExtractVariable
module.

Now, again, consider the table below. Refactor the left code fragment (Pre-refactor column) to the right
code fragment (Post-refactor column).

Hint: use the Inline refactoring command from either the context menu or shortcut Ctrl + Alt + I

Pre-refactor Post-refactor

void PreInlineVariable() {
 int16 number = 1000;
 int16 b = number + 10;
} PreInlineVariable (function)

void postInlineVariable() {
 int16 b = 1000 + 10;
} postInlineVariable (function)

It should be clear that the refactoring did not alter any behaviour, but to be sure, run the provided test
case (Shift + F10).

8

Move
Move refactorings allow to move nodes around within a project. For instance, a function or a variable
declaration. Our example is of the form Move to Imported Module. In the logical view, open the ModuleA
module.

Now consider the table below. Refactor the left code fragment (Pre-refactor column) to the right code
fragment (Post-refactor column).

Pre-refactor Post-refactor

For this exercise we would like you to move some of the functions; functions that contain A should be
moved to ModuleA and functions that contain B should be move to ModuleB. You can use either copy
pasting or the Move to Imported Module refactoring (Ctrl + Alt + M).

The steps are outlined table below

8

9

Make sure that the function A1 is placed above function A2. A handy shortcut to do this is to place the
cursor behind the function or selecting the node and pressing Ctrl + Shift + Up/Down. The selection will
be moved in the direction of choice.

2.3 Task Descriptions Handout for Groups Proj, ProjE

The beginners with a projectional editor and the industrial participants who were experienced with pro-
jectional editing received the following handout describing their tasks.

9

1

Problem Phase
Now that you have completed the learning phase you should be better able to work with a PE. We will
now present a set of problems that we ask you to solve.

In this phase you are only to work with the Problems solution. Inside this solution we have placed a
model called Main. It is subdivided into folders; one for each problem that you should attempt to solve.

In the root of the Main model we have placed a Test implementation module. This module contains a test
for each problem. The criteria for solving the problems is having all the test run without errors.

We have provided a run configuration called Problems that runs this module. At any time you wish to test
your solution you can run this and have your solution verified.

2

Problem 0 - Logic
Recall the propositional equivalences known as tautologies(perhaps from a Discrete Math course you
have previously taken). If you do not recall them they will be presented here and as we go along.

Double negation law ሺሻ ≡

Commutative Law ∨ ݍ ≡ ݍ ∨

Associative Law ሺ ∨ ሻݍ ∨ ݎ ≡ ∨ ሺݍ ∨ ሻݎ	

Distributive law ∨ ሺݍ ∧ ݎ ሻ ≡ ሺ ∨ ሻݍ ∧ ሺ ∨ ሻݎ	

De Morgan’s Law ሺ ∧ ሻݍ ≡ ∨ݍ

Absorption Law ∨ ሺ ∧ ሻݍ ≡

Your task is to complete all the laws in the provided code. That is, you should correct the expression so
that it is identical to the tautology. For instance, by moving parenthesis, adding an expression or fixing a
defect in the statement. We have already implemented the Double negation law to get you started, so you
will know how we expect you to solve the task.

Now go to the Logic Module in the problem0 folder and start the task presented in the next pages.

When you are done run the test(Shift + F10) and make sure that this problem does not fail.

3

Double negation law
The Double negation law is defined as

ሺሻ	≡

Your task is now to implement the Double negation law given the Before implementation, so that is
identical to After implementation.

Before After

4

Commutative Law
The Commutative law is defined as

 ∨ ݍ ≡ ݍ ∨

Your task is now to implement the Commutative law given the Before implementation, so that is identical
to After implementation.

Before After

10

5

Associative Law
The Associative law is defined as

ሺ ∨ ሻݍ ∨ 	ݎ	 ≡ ∨ ሺݍ ∨ ሻݎ	

Your task is now to implement the Associative law given the Before implementation, so that is identical
to After implementation.

Before After

6

Distributive law
The Distributive law is defined as

 ∨ ሺݍ ∧ ሻ	ݎ	 ≡ ሺ ∨ ሻݍ ∧ ሺ ∨ ሻݎ	

Your task is now to implement the Distributive law given the Before implementation, so that is identical to
After implementation.

Before After

7

De Morgan’s Law
The De Morgan’s law is defined as

ሺݍ∧ሻ	≡ ∨ݍ

Your task is now to implement the De Morgan’s law given the Before implementation, so that is identical
to After implementation.

Before After

8

Absorption Law
The Absorption law is defined as

 ∨ ሺ ∧ ሻݍ ≡

Your task is now to implement the Absorption law given the Before implementation, so that is identical to
After implementation.

Before After

.

11

9

Problem 1 - BubbleSort
BubbleSort is a sorting algorithm that works by repeatedly stepping through lists that need to be sorted,
comparing each pair of adjacent items and swapping them if they are in the wrong order. This passing
procedure is repeated until no swaps are required, indicating that the list is sorted.

Now go to the Bubblesort Module in the problem1 folder. There you should implement the bubbleSort
function with the bubblesort algorithm.

Before After

When you are done run the tests(Shift + F10) and make sure that this problem does not fail

10

Problem 2 - Method Signatures
For this task we will look at a simple library. It contains functions, such as: searching for, reserving and
borrowing books.

The function signatures of the library are given in the interface below:

Now go to the Library Module in the problem2 folder. There you should create the interface with the
functions signature of all the functions as specified in the code fragment. You can represent the domain
object, e.g book, by an empty struct.

When you are confident that you have created the functions and have a program that compiles you can
continue to the next problem.

11

Problem 3 - Refactor

Introduction
This problem is about using refactoring. You decide how the refactoring is carried out. However, all
changes you do should be kept in the same module. You do not need to move any code fragment to any
other module.

Now go to the next page of this document. There are three subtasks to be solved. When you are done
run the tests(Shift + F10) and make sure that this problem does not fail.

12

Subtask 1
At the OrderProcess Module in the problem3 folder, consider the CheckInventoryAndValidateCustomer
function. It has too much responsibility. Refactor it into two different functions. The
CheckInventoryAndValidateCustomer should no longer exist when you are done; only CheckInventory
and ValidateCustomer functions.

Be sure to fix calls to this method, so that the program is still valid (no errors.)

Before After

12

13

Subtask 2
Consider the calculatePriceAndApplyDiscount function in the module. Do this by applying the following
refactorings to the code fragment:

1. Refactor it into to two different functions; one to calculate the price and one to apply discounts.
2. When calculating the price replace the nested conditionals with a sequence of if clauses; that is,

remove all else parts.
3. When applying the discount, inline all the function calls so that the logic is placed inside the if

statements. Afterwards, you can delete the no longer needed discount functions
(give25PercentDiscount, give50PercentDiscount and give75PercentDiscount).

4. Replace all magic number with meaningful constants.

Be sure to fix all errors so that the program is still valid.

Before After

14

Subtask 3
As the last part of the refactoring consider the processOrder function in the module.

In this function apply the following refactorings:

1. Surround the checks to the inventory and the customerRegister with an if statement. If both
checks are true, then the price can be calculated and returned, if not, then you should return -1.

2. Inline the ShippingFee variable.
3. Extract the ShippingFee to a constant.

Before After

2.4 Task Descriptions Handout for Group Par

Our students who used the parser-based editor (Eclipse CDT) received the following handout.

13

Problem Solving
We will now present a set of problems that we ask you to solve.

We have created a project called TE(short for Text Editor) that you will work in. Inside this we have placed
a folder called problems. It is subdivided into additional folders; one for each problem that you should
attempt to solve.

In the root of the problems folder we have also placed a RunAllTests.c file. This file contains a test for
each problem. The criteria for solving the problems is having all the tests run without errors.

Problem 0 - Logic
Recall the propositional equivalences known as tautologies(perhaps from a Discrete Math course you
have previously taken). If you do not recall them they will be presented here and as we go along.

Double negation law ሺሻ ≡

Commutative Law ∨ ݍ ≡ ݍ ∨

Associative Law ሺ ∨ ሻݍ ∨ ݎ ≡ ∨ ሺݍ ∨ ሻݎ	

Distributive law ∨ ሺݍ ∧ ݎ ሻ ≡ ሺ ∨ ሻݍ ∧ ሺ ∨ ሻݎ	

De Morgan’s Law ሺ ∧ ሻݍ ≡ ∨ݍ

Absorption Law ∨ ሺ ∧ ሻݍ ≡

Your task is to complete all the laws in the provided code. That is, you should correct the expression so
that it is identical to the tautology. For instance, by moving parenthesis, adding an expression or fixing a
defect in the statement. We have already implemented the Double negation law to get you started, so you
will know how we expect you to solve the task.

Now go to the Logic.c source file in the problem0 folder and start the task presented in the next pages.

When you are done run the test(Ctrl + F11) and make sure that this problem does not fail.

Double negation law
The Double negation law is defined as

ሺሻ	≡

Your task is now to implement the Double negation law given the Before implementation, so that is
identical to After implementation.

Before After

Commutative Law
The Commutative law is defined as

 ∨ ݍ ≡ ݍ ∨

Your task is now to implement the Commutative law given the Before implementation, so that is identical
to After implementation.

Before After

14

Associative Law
The Associative law is defined as

ሺ ∨ ሻݍ ∨ 	ݎ	 ≡ ∨ ሺݍ ∨ ሻݎ	

Your task is now to implement the Associative law given the Before implementation, so that is identical
to After implementation.

Before After

Distributive law
The Distributive law is defined as

 ∨ ሺݍ ∧ ሻ	ݎ	 ≡ ሺ ∨ ሻݍ ∧ ሺ ∨ ሻݎ	

Your task is now to implement the Distributive law given the Before implementation, so that is identical to
After implementation.

Before After

De Morgan’s Law
The De Morgan’s law is defined as

ሺݍ∧ሻ	≡ ∨ݍ

Your task is now to implement the De Morgan’s law given the Before implementation, so that is identical
to After implementation.

Before After

Absorption Law
The Absorption law is defined as

 ∨ ሺ ∧ ሻݍ ≡

Your task is now to implement the Absorption law given the Before implementation, so that is identical to
After implementation.

Before After

.

15

Problem 1 - BubbleSort
BubbleSort is a sorting algorithm that works by repeatedly stepping through lists that need to be sorted,
comparing each pair of adjacent items and swapping them if they are in the wrong order. This passing
procedure is repeated until no swaps are required, indicating that the list is sorted.

Now go to the BubbleSort.c source file in the problem1 folder. There you should implement the
bubbleSort function with the bubblesort algorithm.

When you are done run the tests(Ctrl + F11) and make sure that this problem does not fail. You have to
uncomment the call to the bubblesort function in the test case in order to make it pass the test.

Problem 2 - Method Signatures
For this task we will look at a simple library. It contains functions, such as: searching for, reserving and
borrowing books.

The function signatures of the library are given below:

Now go to the Library Module in the problem2 folder. There you should create the functions signature of
all the functions as specified in the code fragment. You can represent the domain object, e.g book, by an
empty struct.

When you are confident that you have created the functions and have a program that compiles you can
continue to the next problem.

Problem 3 - Refactor
This problem is about using refactoring. You decide how the refactoring is carried out. However, all
changes you do should be kept in the same module. You do not need to move any code fragment to any
other module.

Now go to the OrderProcess.c source file in the problem3 folder.

You can always run the provided tests(Ctrl + F11) and make sure that this problem does not fail.

Subtask 1
Consider the CheckInventoryAndValidateCustomer function. It has too much responsibility. Refactor it to
two different functions. The CheckInventoryAndValidateCustomer should no longer exists when you are
done; only CheckInventory and ValidateCustomer functions.

Be sure to fix calls to this method, so that the program is still valid (no errors.)

Before After

16

Subtask 2
Consider the calculatePriceAndApplyDiscount function in the module. Do this by applying the following
refactorings to the code fragment:

1. Refactor it into to two different functions; one to calculate the price and one to apply discounts.
2. When calculating the price replace the nested conditionals with a sequence of if clauses; in other

words, remove all else parts.
3. When applying the discount, inline all the function calls so that the logic is placed inside the if

statements. Afterwards, you can delete the no longer needed discount functions
(give25PercentDiscount, give50PercentDiscount and give75PercentDiscount).

4. Replace all magic numbers with meaningful constants.

Be sure to fix all errors so that the program is still valid.

Before After

Subtask 3
As the last part of the refactoring consider the processOrder function in the module.

In this function apply the following refactorings:

1. Surround the checks to the inventory and the customerRegister with an if statement. If both
checks are true, then the price can be calculated and returned, if not, then you should return -1.

2. Inline the ShippingFee variable.
3. Extract the ShippingFee to a constant.

Before After

3 Detailed Additional Statistics

In addition to the statistics and diagrams provided in the paper, the following information might be
useful, comprising a more exact breakdown of errors (per sub-task) for the first two tasks, and a more
exact breakdown of modification and refactoring operations (per operation) in Task 4.

3.1 Basic Editing and Errors

3.1.1 Editing Errors

In addition to the relative numbers of errors made in the basic-editing tasks, which are shown in the
paper, we provide the absolute numbers in Fig. 5 and Fig. 6.

17

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
5

10
15

20

(a) commutative law

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
1

2
3

4

(b) associative law

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
5

10
15

(c) distributive law

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
1

2
3

4
5

6
7

(d) De Morgan’s law

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
1

2
3

4
5

6

(e) absorption law

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
10

20
30

(f) total (sum of errors made in all laws)

Invalid Trailing Wrong Mistake Overdeletion

Figure 5: Absolute numbers of errors made in task 1 (edit expressions)

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
2

4
6

8

(a) method signature

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
1

2
3

4
5

(b) declarations

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
5

10
15

20

(c) FOR loops

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
1

2
3

4
5

6

(d) IF statements

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
1

2
3

4
5

(e) assignments (swap)

Proj ProjE Par

nu
m

be
r

of
 e

rr
or

s

0
10

20
30

40

(f) total (sum of errors in all parts)

Invalid Trailing Wrong Mistake Overdeletion

Figure 6: Absolute numbers of errors made in task 2 (bubblesort algorithm)

18

3.2 Modification and Refactoring Operations

Recall that we count, for each group and each of the three subtasks, how many participants have used
a specific operation. This measurement simplified the counting effort, since we did not need to count
all usages, but rather see wether one participant used it in a subtask, and if so, we stopped counting
this participants usage of the operation in the specific subtask. In other words, we “observed” whether
an operation was used, and then we aggregate the number of “observations” across all subtasks and
participants.

Table 1: Move operation

refactoring subtask Proj ProjE Par

subtask 1 2 3 0
subtask 2 4 4 0
subtask 3 1 2 1
total relative to all “observations” 35% 60% 6%

Table 2: CopyPaste operation

refactoring subtask Proj ProjE Par

subtask 1 1 0 3
subtask 2 4 1 5
subtask 3 0 2 6
total relative to all “observations” 25% 20% 78%

Table 3: CutPaste operation

refactoring subtask Proj ProjE Par

subtask 1 7 3 4
subtask 2 3 3 3
subtask 3 5 2 3
total relative to all “observations” 75% 53% 56%

Table 4: ManualInsertion operation

refactoring subtask Proj ProjE Par

subtask 1 0 0 0
subtask 2 4 2 5
subtask 3 5 3 5
total relative to all “observations” 45% 33% 56%

19

Table 5: RefactoringAction operation

refactoring subtask Proj ProjE Par

subtask 1 1 0 1
subtask 2 5 5 1
subtask 3 0 5 0
total relative to all “observations” 30% 53% 11%

Table 6: SurroundWithAction operation

Refactoring Sub-task Proj ProjE Par

Sub-task 1 0 0 0
Sub-task 2 0 0 0
Sub-task 3 0 3 0
Total relative to observations 0% 20% 0%

References

[1] R. Likert, “A technique for the measurement of attitudes,” Archives of Psychology, 1931.

[2] A. Strauss and J. Corbin, “Grounded Theory Methodology,” in Handbook of Qualitative Research,
1994, pp. 273–285.

[3] R. Goede and C. de Villiers, “The Applicability of Grounded Theory As Research Methodology in
Studies on the Use of Methodologies in IS Practices,” in Proc. SAICSIT, 2003.

[4] A. Strauss and J. Corbin, “Open Coding,” Basics of Qualitative Research: Grounded Theory Proce-
dures and Techniques, vol. 2, pp. 101–121, 1990.

[5] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards User-Friendly Projectional Editors,” in
Proc. SLE, 2014.

20

	Survey
	Questionnaire Design
	Analysis
	Results

	Experiment Material
	Repositories
	Training Session Handout
	Task Descriptions Handout for Groups Proj, ProjE
	Task Descriptions Handout for Group Par

	Detailed Additional Statistics
	Basic Editing and Errors
	Modification and Refactoring Operations

