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ABSTRACT
Variability-rich software, such as software product lines, of-
fers optional and alternative features to accommodate vary-
ing needs of users. Designers of variability-rich software
face the challenge of reasoning about the impact of select-
ing such features on the quality attributes of the resulting
software variant. Attributed feature models have been pro-
posed to model such features and their impact on quality
attributes, but existing variability modelling languages and
tools have limited or no support for such models and the
complex multi-objective optimization problem that arises.
This paper presents ClaferMoo, a language and tool that
addresses these shortcomings. ClaferMoo uses type inher-
itance to modularize the attribution of features in feature
models and allows specifying multiple optimization goals.
We evaluate an implementation of the language on a set of
attributed feature models from the literature, showing that
the optimization infrastructure can handle small-scale fea-
ture models with about a dozen features within seconds.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reuse
Models

General Terms
Software Product Lines, Multi-objective optimization

1. INTRODUCTION
Software and variability are ubiquitous. Devices, such as
watches and automobiles, come in different variants, and so
does the software embedded within them. Companies using
software product line engineering derive such variants from a
set of configurable software assets [4]. Ecosystem platforms,
such as the Linux kernel, offer thousands of configuration
options in order to support a wide range of applications [3].
Dynamically adaptable software provides numerous varia-
tion points to allow reconfiguration and extension [9]. Vari-
ability also occurs when multiple design choices are allowed

early in the design of a system.

Variability gives rise to complex decision making that needs
to take quality (non-functional) requirements into account.
Software designers must determine the range of features—
coherent increments of functionality—that the software will
offer to their customers. For example, a mobile phone plat-
form can offer different types of displays, input devices, com-
munication protocols, and encryption technologies. Each of
these features will impact differently the quality attributes
of the resulting product, such as battery life and perfor-
mance. The users of the platform select features for a spe-
cific product, while also paying attention to the resulting
quality attributes. In particular, they want to be able to
select the features required in their application context and
automatically determine the selection of other features to
optimize desired quality attributes of the resulting product.
For example, a user might require a particular display type,
but then optimize the remaining choices to minimize cost
and maximize battery life.

An emerging trend from software product line engineering
is to represent software variability explicitly as variability
models [9]. Such models enable software designers to decide
and manage the scope of the provided variability; they also
enable users to select among the available choices and derive
a software variant that meets their needs. While the major-
ity of the existing variability modelling approaches and tools
do not account for quality attributes, attributed feature mod-
els address this need [2].

A feature model is a menu-like hierarchy of features with
additional constraints on valid feature selections [7]. Fig-
ure 1 shows a simplified feature model of a mobile phone
platform, which can be used to derive a software variant.
Connectivity is a mandatory feature (denoted by the filled
circle), with an OR group of three child features (denoted
by the filled arc); that is, at least one of Bluetooth, USB, or
Wifi has to be selected for a concrete variant. PasswordPro-
tection is an optional feature (denoted by the empty circle).
A feature model can also contain cross-tree constraints as
logical formulas, such as Wifi implies PasswordProtection.
An attributed feature model puts “price tags” on features,
denoting the feature’s impact on some quality attribute of
the resulting variant. For example, the added dollar cost of
selecting Bluetooth is $50 versus $85 for Wifi, and the added
performance gain is 300 for Bluetooth versus 725 for Wifi.
The Cost and Performance functions indicate how quality



attributes of a variant are computed based on the feature-
level quality attributes (feature attributes, for short).
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Figure 1: An attributed feature model of a Mobile-
Phone platform (adapted from Benavides et al. [2])

While attributed feature models provide an intuitive way
to represent the available features and their variability and
impact on the quality attributes of the resulting variant,
current language and tool support for such models is lim-
ited. First, existing work assumes that features are anno-
tated with attribute values on a per need basis, without
providing any way to group features into abstractions, nor
to type features using these abstractions; consequently, one
could easily overlook annotating some features when new
attributes are introduced. For example, some features could
be purely software while others could be a combination of
software and hardware. Certain attributes may apply to cer-
tain types of features only. Second, while the simple sum-
mation of price tags works well for some quality attributes,
software features often interact [14], meaning that the com-
bined contribution of two or more features is not just the sum
of their individual contributions. For example, the memory
consumption of two features may be higher (or lower) than
the sum of the memory consumption of each feature when
used in separation. A language for representing attributed
feature models has to be expressive enough to accommo-
date such interactions. Third, the language and the tooling
needs to support multiple optimization goals. While exist-
ing work has addressed optimization for a single objective or
a weighted combination of objectives (e.g., [2]), current vari-
ability modelling languages and tools do not support truly
multi-objective optimization. Such a capability is highly de-
sirable because collapsing the problem to a single objective
fails to explore much of the design space.

This paper addresses these shortcomings by showing how a
variability modelling language with support for types and
inheritance can express the attribution of feature models in
a modular way and also accommodate feature interactions.
Further, the paper shows how multiple goals can be concisely
defined based on types. We demonstrate these ideas using
ClaferMoo, which extends the structural modelling language
Clafer [1] with facilities to express multiple optimization ob-

jectives. ClaferMoo uses existing extensions of the relational
modelling language Alloy [8, 10, 16] and its tooling, which
enable it to perform exact, discrete multi-objective optimiza-
tion in the presence of relational constraints. We evaluate
ClaferMoo on a set of existing attributed feature models,
showing that they can be adequately expressed in Clafer-
Moo and that the existing optimization infrastructure can
handle small-scale feature models with about a dozen fea-
tures within seconds. Although small-scale, these feature
models represent real-world software and already give rise to
thousands or millions of configurations, making tool support
necessary. In future work, we plan to improve the scalability
of the optimization infrastructure and to test the approach
and tooling on a wider set of models.

Paper organization. Section 2 describes how attributed fea-
ture models are expressed in Clafer, followed by Section 3
on multi-objective optimization in Clafer. Section 4 presents
the toolchain for the product derivation process. Section 5
presents the methodology employed and the experimental
results, and Section 6 presents threats to validity. Lastly,
Section 7 presents related research, and Section 8 concludes.

2. ATTRIBUTED FEATURE MODELS
Clafer has been designed to provide concise syntax for speci-
fying feature models. Figure 2 shows the basic feature model
(without attributes) of the MobilePhone platform from Fig-
ure 1 in Clafer. Each line in the Clafer model—except those
in brackets—defines a type; the indentation denotes type
nesting, exemplified in the corresponding feature model in
Figure 1. The question mark following PasswordProtection
denotes optionality. More precisely, the question mark is
syntactic sugar for the cardinality constraint 0..1; i.e., an
instance of MobilePhone can contain zero or one instances
of PasswordProtection. Since Connectivity does not have a
cardinality constraint at the end of the line, it is assumed to
be mandatory (cardinality 1..1). The or keyword in front of
Connectivity represents a group cardinality constant, which
constrains the possible number of children. More precisely,
or stands for 1..*; that is, an instance of Connectivity must
contain an instance of any non-empty subset of Bluetooth or
Wifi or USB. Note that MobilePhone is declared as abstract,
meaning that there are no instances of this type; however,
the last line declares MyPhone as a singleton concrete sub-
type of MobilePhone, effectively defining an instance of the
MobilePhone product line. The lines in brackets represent
constraints (the lines are conjoined implicitly), and since the
entire constraint is nested under MyPhone, it constrains the
instance represented by MyPhone. Effectively, MyPhone is
a particular instance of MobilePhone that has Bluetooth and
USB, but not Wifi or PasswordProtection.

Clafer also supports any attribute that can be encoded as
an integer. Figure 3 shows our MobilePhone feature model
with performance attributes added, including their values.

When different quality attributes need to be used, it is use-
ful to group them into abstractions from which individual
features can inherit. Figure 4 illustrates this idea (ignore the
last three lines for now). The first part of the model defines
an inheritance hierarchy of features: all features have per-
formance and cost attributes. Security features additionally
have a security attribute.



abstract MobilePhone
or Connectivity
Bluetooth
USB
Wifi

PasswordProtection ?

MyPhone : MobilePhone
[ no Wifi
USB
Bluetooth
no PasswordProtection ]

Figure 2: Feature model of the MobilePhone plat-
form and a sample instance in Clafer

abstract MobilePhone
or Connectivity
Bluetooth
performance : integer = 300

USB
performance : integer = 500

Wifi
performance : integer = 725

PasswordProtection ?
performance : integer = 20

Figure 3: Attributed feature model in Clafer

MobilePhone in Figure 4 also defines three additional at-
tributes, each starting with total . These attributes nest
constraints that set them up as the total sums of, respec-
tively, the performance, security, or cost attributes of the se-
lected features. The navigation expression Feature.performance

returns a set of integers, which are all the performance val-
ues nested under all instances of Feature. The sum operator
computes the sum of these numbers.

Feature interactions can be easily accommodated by adding
conditional terms to the sum. For example, let’s say that
Bluetooth and Wifi interact negatively in terms of perfor-
mance, with the negative impact of 20. Such interaction
could be expressed as follows:

(sum Feature.performance) + (Bluetooth && Wifi ? −20 :0)

3. MULTI-OBJECTIVE OPTIMIZATION
A multi-objective optimization problem arises when mod-
elling goals (or objectives) over quality attributes. This oc-
curs when the user intends to maximize or minimize func-
tions over multiple product quality attributes.

A multi-objective optimization problem has a set of solu-
tions known as the Pareto Front that represents the trade-
offs between the different objectives [15]. The Pareto Front
consists of Pareto-optimal solutions, which can be defined
intuitively as follows: a Pareto-optimal solution is one in
which no metric can be made better off without making an-
other worse off. As the old adage goes, ‘fast, cheap, or good:
pick two’. In other words, the Pareto Front of this adage will
include three solutions: fast and cheap, fast and good, and
cheap and good.

abstract Feature
performance : integer
cost : integer

abstract SecurityFeature : Feature
security : integer

abstract MobilePhone
or Connectivity
Bluetooth : Feature
[ performance = 300
cost = 50 ]

USB : Feature
[ performance = 500
cost = 35 ]

Wifi : Feature
[ performance = 725
cost = 85]

PasswordProtection : SecurityFeature ?
[ security = 1
performance = 20
cost = 10]

total performance : integer
[ total performance = sum Feature.performance ]

total cost : integer
[ total cost = sum Feature.cost ]

total security : integer
[ total security = sum SecurityFeature.security ]

MyPhone : MobilePhone

<< max MyPhone.total performance >>

<< min MyPhone.total cost >>

// << max MyPhone.total security >>

Figure 4: Feature model with inherited attributes
in Clafer and with goals (ClaferMoo extension)

Multi-objective solvers may be heuristic or exact. Heuris-
tic solvers are often built with genetic algorithms. We use
an exact solver called Moolloy [10] that was built on top
of Kodkod [17] and incorporated into the surface syntax of
Alloy in previous work [16].

The underlying ClaferMoo implementation, based on Mool-
loy, will generate multiple model instances in the presence
of multiple optimization goals. For example, the model
in Figure 4 specifies two goals—one to maximize perfor-
mance and another to minimize cost, with goals being ex-
pressed within opening and closing angled brackets, followed
by “max” or “min” and then an integer expression. (A third
goal—maximize security—is commented out because it is
easier to visualize a Pareto Front in two dimensions.) Fig-
ure 5 shows the Pareto Front for the performance and cost
objectives of the mobile phone example.

If needed, MyPhone can be constrained with some required
choices, such as the selection of USB, but not Wifi; such
constrained instances can be referred to as partial configura-
tions. Given a partial configuration, the underlying imple-
mentation searches for optimal solutions to complete it.

4. IMPLEMENTATION
Figure 6 illustrates the high-level architecture of the current
ClaferMoo implementation. The architecture is a batch-
sequential process, where each stack of boxes represents a



Figure 5: Performance vs. Cost for the mobile
phone platform in Figure 4. The Pareto Front, in-
dicated with asterisks, identifies optimal configura-
tions. Dots represent dominated (sub-optimal) solu-
tions that were discovered during the optimization
process.

computational node and each arrow represents data flow.
The top of each stack represents an existing tool that was
reused and extended in the implementation of ClaferMoo;
the boxes below represent extensions.

The existing Clafer-to-Alloy translator [1] has been extended
with the sum operator, support for expressing goals, and a
modified translation to Alloy that enables specifying partial
instances, as explained next.

The solving and analysis of Clafer models is implemented
by translation to a modified version of Alloy4—a lightweight
modelling language described in [5]—using a version of the
Alloy Analyzer that has been extended to support multi-
objective optimization [10, 16] and partial instances [8]. Un-
til recently, Alloy4 had lacked support for specifying par-
tially completed instances; however, a recent paper [8] in-
troduced new syntax—the inst block—that more fully uti-
lizes the capabilities of Kodkod [17]—Alloy’s underlying re-
lational reasoner. The Clafer translator produces an Alloy
model that includes an inst block for a partially configured,
concrete attributed feature model, and that also uses the
objectives block for expressing goals. Thus, both the partial
instance and objectives extensions are required.

Ordinarily, the Alloy Analyzer simply generates model in-
stances that are then translated back to Clafer as concrete
instances; however, in this toolchain, Moolloy [10]—an ex-
act, discrete multi-objective optimization solver—is intro-
duced into the backend in order to generate model instances
that respect the desired optimization goals. Moolloy’s un-
derlying algorithm incrementally explores the boundaries of
the Pareto Front, making multiple calls to Kodkod, which,
in turn, relies on a backend, off-the-shelf SAT-solver.

5. EVALUATION
We have evaluated ClaferMoo on an existing collection of
attributed feature models from the literature [14] [12] [13].

The objective of the evaluation was to address two questions:

1. Can real-world attributed feature models be expressed
in ClaferMoo?

2. How scalable is the current implementation?

Table 1 lists the models used in the evaluation. These
models were extracted from existing, highly configurable
open-source software systems—the first column indicates the
names of these systems. The configuration options are typ-
ically compilation options controlling conditional code in-
clusion. As indicated in the second column, seven of these
models have around a dozen features (i.e., configuration op-
tions) each; two have around one hundred features each. The
third column indicates the number of cross-tree constraints,
which are binary requires and excludes constraints. The last
column indicates the quality attributes included in the mod-
els. No feature interactions were considered in our extracted
models with respect to quality attributes. The majority of
the models include the binary footprint of the executable;
one model includes three quality attributes.

5.1 Methodology
Question 1, expressiveness, was answered affirmatively in
two ways. First, by writing a script to translate attributed
feature models from Apel’s XML format to ClaferMoo. Sec-
ond, feature models presented graphically by Siegmund et al.
[13] were translated to ClaferMoo by hand. All of the models
can be expressed naturally in ClaferMoo.

Question 2, performance & scalability, was evaluated by gen-
erating and solving ten random, satisfiable, partial configu-
rations for each feature model. These partial configurations
were generated by assigning, with equal probability, each
feature in a model a status of ‘selected’, ‘not selected’, or
‘unconstrained.’ Partial configurations were checked to en-
sure that they did not violate any constraints of the feature
model; unsatisfiable partial configurations were discarded.
Each optimization run was repeated 20 times and median
running times were recorded. The optimization goals were to
minimize footprint, maximize performance, minimize price,
and maximize reliability. The experiments were run on a
Macbook Pro running OS X Snow Leopard (10.7.4) with a
2.2 GHz Intel Core i7 processor and 8GB of memory.

5.2 Results
Table 2 shows the results of the performance evaluation.
The second column specifies the size of the Pareto Front,
that is, the number of Pareto-optimal solutions (for unspe-
cialized models). The third column gives the median times
(over 20 repetitions) to compute these solutions. It turns
out that all models have a small number of Pareto-optimal
solutions. For models with a single objective, multiple so-
lutions arise when each optimal solution achieves the same
total quality attribute value via different design decisions.
The fourth column shows the median size of the Pareto
Front sizes for the 20 randomly-generated satisfiable par-
tial configurations; the last column shows the corresponding
median time to compute them. As expected, partial con-
figurations constrain the solution space, also reducing the



Figure 6: ClaferMoo architecture overview

Table 1: Software Product Lines and Attributed
Feature Models
Software Prod-
uct Line

Features Cross-Tree
Constraints

Quality
Attributes

Apache 9 1 Performance
Berkeley Db I 9 0 Footprint
Berkeley Db II 12 0 Footprint,

Price,
Reliability

LinkedList 18 1 Footprint
PKJAB 11 0 Footprint
Prevayler 5 1 Footprint
SQLite 85 2 Footprint
UML Violet 100 89 Footprint
ZipMe 8 0 Footprint

size of the Pareto Front. The computation times are also
well-behaved—more constrained problems require less time.

In general, increasing the number of features appears to lead
to increased solving time, and, in the case of UML Violet,
which timed-out in the experiment, the number of cross-tree
constraints may also have lead to increased solving times.
With the exception of SQLite and UMLViolet, the single-
objective models are solved in a few seconds or less. The
multi-objective model, Berkeley Db II, is solved in a few
minutes or less.

6. THREATS TO VALIDITY
The main threat to the external validity of the evaluation
is the small sample of models. Feature models attributed
with quality attributes are rare; we have used models based
on recent work on extracting such models from variability-
rich software [14]. The majority of these models are small
and only one has multiple quality attributes, and no addi-
tional multi-objective attributed feature models were avail-
able from [14] [12] [13]. On the other hand, the selected
models describe real-world software of sufficient complexity
such that tool support is needed to reason about their vari-
ants.

7. RELATED WORK
We are unaware of any prior work of applying multi-objective
optimization in the context of variability models.

A series of papers—[14], [12], [13], and [11]—by the re-
search group of Sven Apel have presented a methodology for

Table 2: Running times for Optimizing Software
Product Lines for Quality Attributes
SPL Pareto

Front
Size

Time to
Compute
Pareto
Front

Pareto
Front Me-
dian Size
for Partially
Configured
SPL

Median
time to
compute
PF for
Partially
Configured

Apache 2 0.2 s 1 90 ms
Berkeley
DB

1 0.8 s 1 0.4 s

Berkeley
DB II

6 3.8 min. 2.5 46 s

LinkedList 2 4.6 s 1 0.7 s
PKJAB 2 0.1 s 1 78 ms
Prevayler 1 0.1 s 1 59 ms
SQLite N/A >11.1 min. N/A >18 min.
UML Vio-
let

Time
Out

N/A N/A N/A

ZipMe 2 0.1 s 1.5 50 ms

quantifying quality attributes (non-functional properties) in
software product lines, and recommended that these mod-
els could be used for optimization. They built a special
tool called SPL Conqueror to measure the footprint, per-
formance, etc., of different variants of a software product
line, and to infer attributed feature models. In contrast,
the work presented in this paper makes use of such models
to help stakeholders automatically complete the configura-
tion process by finding the optimal variant, respecting the
choices already made by stakeholders.

In [6], Sincero et al. introduce quality attributes into the
software configuration process by giving feedback to stake-
holders about their feature choices, attempting to predict
the values of quality attributes. They test their approach
with a subset of the Linux kernel, and they modify the Linux
configuration tool to show the impact of feature selection on
quality properties of the kernel.

The work by Benavides et al. [2] introduces extended fea-
ture models, which are translated to a constraint solver
in order to find optimal solutions; however, they only use
single-objective optimization (modelling multiple objectives
by weighting). They implement their approach using the
commercial constraint solver OPL-Studio.



In [18], White et al. present a fast (polynomial time) ap-
proximation algorithm to select near-optimal products con-
figurations using a single objective while respecting multiple
resource constraints. They test their approach on randomly
generated feature models and show that models having up
to 10000 features can be solved in a couple of seconds, and
that their solutions are within 90% of the optimal products.

8. CONCLUSION AND FUTURE WORK
Versatile software inevitably leads to variability, and compa-
nies using product line engineering can benefit from explor-
ing the design space of optimally configured product lines.
The ClaferMoo tool can help stakeholders to incorporate
their desired quality attributes into the configuration process
for software product line or customizable software. This can
be achieved by specifying goals, using new syntax in Clafer,
over the quality attributes, and by allowing a multi-objective
constraint solver to enumerate the optimal products.

Future work is needed in order to study how the perfor-
mance of the solver is impacted by characteristics of the at-
tributed feature models, such as number of features, number
of cross-tree constraints, and feature interactions. Addition-
ally, a user-study is needed in order to evaluate the efficacy
of the approach taken for specifying attributed feature mod-
els with goals in Clafer. As well, product line engineers using
multi-objective optimization need to identify strategies for
selecting optimally configured products, given the various
trade-offs among optimal configurations in the presence of
multiple conflicting design goals. And most importantly, fu-
ture work needs to address the scalability limitations of the
current optimization infrastructure.

By applying this approach to attributed feature models for
both academic and open source software product lines from
different domains, it has been shown that there is value in
using such an approach, that, with the exception of one
of the models, the multi-objective optimization solver can
easily compute. There is much promise in further exploring
this research.
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