
1

Model Evolution: Comparative Study between Clafer and
Textual UML

Dina O. Zayan
Generative Software

Development Lab
University of Waterloo

Canada

dzayan@gsd.uwaterloo.ca

ABSTRACT

This paper presents a comparative study between two modeling

languages; Clafer and Textual UML. In this work, we present our

motivation for domain modeling, we perform a pilot study to

provide preliminarily results about the differences between both

modeling languages with respect to structural model evolution at

the requirements stage. We conclude with lessons learnt and

considerations to take into account with the experimental design

for the empirical study.

Categories and Subject Descriptors

D.3 [Software]: Modeling Languages.

General Terms

Structural Modeling, Languages, Constraints, Evolution.

Keywords

USE, OCL, UML, Clafer, Evaluation.

1. INTRODUCTION
The efficient and effective employment of model-based software

engineering starts with creating and evolving models that capture

elements from the problem domain precisely. In this paper, we are

interested in domain modeling. A domain model can be thought of

as a representation of the concepts from a domain of interest. It

can be used to effectively validate the understanding of the

problem domain among various stakeholders. A high-fidelity

domain model could also serve as a domain metamodel which in

turn can be used to create a Domain Specific Language (DSL).

Domain models always evolve during the requirements stage

since the domain understanding changes frequently during

elicitation and with increased understanding of the problem. In

this paper, we consider two languages that can be used for

creating highly detailed and accurate domain models at the

requirements stage: Clafer [3] and UML [5, 6].

Clafer (Class, feature, reference) is a general purpose lightweight

structural modeling language developed at the Generative

Software Development Lab, University of Waterloo. Clafer is

being designed to support domain modeling, requirements

elicitation and specification. We choose UML to be the second

modeling language in our comparison since it is currently the

predominant modeling language in the software industry.

However, since Clafer has a textual notation, we select a textual

variant of UML: USE (UML-based Specification).

The rest of the paper is organized as follows: section 2 introduces

the model structure of Clafer and textual UML, section 3

describes the employed methodology for this research, section 4

provides the analysis of the developed models, section 5 provides

the evaluation of the preliminarily results out of this pilot study as

well as possible threats to their validity, and finally section 6

provides the conclusions. Complete Clafer and UML models are

included in appendices at the end of the paper

2. CLAFER AND TEXTUAL UML

2.1 Textual UML Model
A specification written in USE is a textual description based on

UML class diagrams and Object Constraint Language (OCL)

constraints. To define a USE specification, you need a text editor.

In USE, every UML model has a model name and an optional

body [5, 6]. The model body is divided into four sections;

Enumeration Definitions, Class Definitions, Association

Definitions, and Constraints.

All enumerations have to be placed on top of the model directly

below the model name. Class declarations form the next section of

the model. Class declarations contain definitions of attributes. The

third section includes the associations. There are three types of

associations that could be included in the model; regular

association, composition, and aggregation. USE supports the

definition of association names, role names and association end

multiplicities. The fourth and final section of the model represents

the OCL constraint definitions. Comments could be added to any

section in the model, but must be preceded with --.

2.2 Clafer Model
Clafer is a class modeling language with first class support for

feature modeling [3]. It provides uniform syntax and semantics to

class and feature models. A Clafer model consists of clafer1

definitions and constraints. The model is not divided into separate

sections like in USE. Clafers express the domain concepts in the

model and the possible variability among them with the help of

nested constraints. There are two types of clafers:

1. Abstract Clafers: An abstract clafer declaration defines

a new type. The set of abstract clafers represent the

metamodel of the domain or the system under test.

2. Concrete Clafers: A concrete clafer represents a

possible set of instances/configurations of an abstract

one.

1 The name “Clafer” refers to the modeling language. The

expressions “clafer”, “clafers”, “children/parent clafer” refer to

the elements of the model written in Clafer language.

2

Clafer expresses the composition relationship by indenting child

clafers under a parent one. There are several features associated

with a Clafer model such as:

1. Hierarchy/Nesting: Clafer supports hierarchies by

means of indentation.

2. Clafer Cardinality: defines how many instances of a

given clafer can appear as children of the parent clafer.

3. Group Cardinality: defines how many children of a

given clafer can be instantiated.

4. Inheritance: Clafer supports single inheritance. Both

abstract and concrete clafers inherit everything from

their superclafers.

5. References: Clafer supports references as a means of

defining relations between clafers. Clafer does not

directly support associations.

3. METHODOLOGY
In this section we present the methodology applied to the design

of the pilot study in a way that would benefit a longer term

empirical study, and to make a preliminary evaluation of Clafer

and Textual UML as structural modeling languages with respect

to their support for model evolution [4]. We relied on the

principles from the Goal Question Metric (GQM) methodology

[1]. The methodology deals with three levels:

1. Conceptual Level; Specification of goals. Our goal was

to design an empirical study to compare between Clafer

and Textual UML in terms of their support for structural

model evolution at the requirements stage.

2. Operational Level; Formalization of goals assessment in

terms of research questions.

2.1 Which language better supports structural

modeling and expressing constraints?

2.2 Which language better supports model evolution?

2.3 What are the strengths and weaknesses of each

language in general and with regard to model

evolution in specific?

2.4 What kind of tool support would help with model

evolution?

2.5 What are the recommendations for the design of

Clafer?

3. Quantification Level; Specification of a set of

evaluation criteria to address the defined research

questions –presented in Section 3.1.

In order to design an experiment, we needed to have a hypothesis

or initial claims about each modeling language that we wanted to

verify, thus we decided to perform this pilot study to get

preliminary results in the form of answers to the first three

research questions. Moving forward with the pilot study, first a

choice had to be made about which textual UML modeling

specification we were going to use in the study. Our research

explored different textual representations for UML; the Kernel

MetaMetaModel (KM3) specification, Human Usable Textual

Notation (HUTN), EMFText, and the UML-Based Specification

(USE).

We modeled a Book example using Clafer, and each of the UML

textual representation candidates to determine the features of

each, differences among them, and to decide which specification

is better suited to represent UML class diagrams in a textual

notation. We were looking for common class diagram features

support including; class declarations, associations,

attribute/reference cardinality, integration of OCL constraints,

inheritance, object diagram support. HUTN only supports textual

representation for class instances. EMFText does not support

associations. KM3 does not support the integration of OCL

constraints into the same model neither the modeling of

associations, thus we chose the USE specification. However, we

added a few extensions to USE to conform to standard UML class

diagram modeling: we allowed cardinalities and non-primitive

types for attributes (i.e., references).

Next, we selected the type and scope of the system to be used in

the pilot study. We wanted a real world example that has a

relatively big scope to serve as a reference for evaluating Clafer

even after completing the pilot study. Using an independent

example helped us to avoid any bias if we had designed our own

example. A real world example would not only have a significant

amount of requirements that would greatly help model evolution,

but it would also help us perform and experience the process for

which Clafer is intended: taking a general description of a system,

and constructing a formal version of it using Clafer. We used

Oracle Retail Merchandise Financial Planning (Oracle MFP)

System documents as the reference from which we elicited the

requirements and formalized them into a requirements document

representing the system under test [7].

After finishing the models completely, we checked for

syntax/logical errors by their supported tools. We successfully

parsed the Clafer models using Clafer tools, but the Instance

Generator (ClaferIG) [ref] had bugs related to references, so we

were unable to generate instances. For the UML model, we first

commented out the extensions we made to the specification and

then we compiled it successfully in USE tool.

3.1 Evaluation Criteria
We decided on the set of criteria for the evaluation of both

modeling languages based on observable characteristics of a

model and the common design considerations that are taken into

account when designing a modeling language. These criteria

would also serve as the basis for evaluation in the future empirical

study [8].

3.1.1 Model Size
The model size is strongly related to the ability of a modeling

language to provide concise representation of the requirements of

a certain domain. What is the total number of lines of code for

each of the models? What is the total number of characters for

each of the models?

3.1.2 Expressiveness
An important concern in evaluating a modeling language is

whether the language is expressive enough. The expressive power

of a language is usually determined by how far facts from the

problem domain are expressed in an easy manner. Were certain

requirements impossible to express? Were certain requirements

difficult to express? This criterion is also very important when

evolving models since increased knowledge often adds to the

modeling difficulty.

3.1.3 Requirements Distribution
The ease with which a modeler creates or evolves a model

depends on how parts of the model representing a requirement are

distributed. As the context in which all information about a

requirement is decreased, a modeler could easily see missing

information about a requirement that is needed to be included.

3

How many parts for modeling a single requirement are distributed

throughout the model?

3.1.4 Amount of Restructuring
Evolution of structural models occurs as a result of a series of

modifications in the problem domain description of the system

under test. The effect of changes could be as small as changing

the name of attributes, or as significant as refactoring the whole

model. In order to provide better support for model evolution, a

modeling language should be able to accommodate modifications

with minimum amount of restructuring. What types of

restructuring occurred in our models? How many lines of code

were added/deleted in a restructuring step?

3.1.5 Locality of Change
Since model evolution means that formal models are being

refactored and refined continuously, it is important that changes,

especially small ones, remain contained within a small context as

much as possible to ease the process for the modeler. Do changes

propagate throughout the entire model? Is there a way for global

changes to be avoided?

3.1.6 Frequency of Errors
The types and number of errors frequently occurring in a model

help in pointing out the weaknesses of a modeling language. What

were the most common errors made when using the language?

What was the frequency of these errors? Can we identify the

reasons behind the occurrence of these errors? Can we find a way

to avoid them?

3.1.7 Redundancy
To be able to achieve compactness in a formal model, one of the

most important factors is avoiding redundancy. Was redundancy

present in our models? Are there different types of redundancy?

Can we identify causes of redundancy? Can we think of ways to

avoid it?

3.1.8 Validation Mechanisms
Structural model validation is important to the modeling process

since it investigates how closely does the model represent the

required structure characteristics of the system. A model should

provide means to support the integration of a validation

mechanism within the same representation. Is validation possible

without tool support? If yes, how useful is this mechanism in

preventing/detecting mistakes? And how much do the generated

instances resemble the abstracted concepts?

3.1.9 Speed of Modeling
The level of comfort and the ease with which a modeler is able to

correctly model a requirement using a given language is reflected

in the speed with which he/she models that requirement. When

evolving models, it is important that the language supports the

process in a fast manner to accommodate the rapidly changing

nature of requirements elicitation. Which language allows for

faster modeling?

3.1.10 Clarity and Understandability
Since we are concerned with evaluating Clafer and UML for their

modeling capabilities and usability at the requirements stage, their

primary focus would be providing humans with the ability to

exchange ideas and thoughts about models. In this context, clarity

and understandability are always important. A model is clear if it

corresponds to recognition patterns of the user. Since recognition

patterns vary among different users, this would be a subjective

criterion and hence would be tested only in the empirical study to

have a considerable number of subjects instead of just one.

Understandability, on the other hand, could be measured through

how far a developed model would help the users learn about the

domain. Of course the familiarity with the concepts and notation

of a language would be a factor influencing both clarity and

understandability. In order to gather data about these criteria, one

proposed idea is to give the subjects the developed domain models

and a prepared set of questions about the domain. We would count

the number of correct answers, the speed of answering these

questions, and finally ask the subjects to respond to a

questionnaire to collect some qualitative data such as the subjects’

confidence level in their submitted answers.

4. RESULTS AND ANALYSIS
In this section we present the analysis performed on the developed

models based on the previously defined evaluation criteria. The

purpose of this analysis is to capture the differences between

Clafer and UML in structural modeling, identify the strengths and

weaknesses of each language which would finally help in the

design of the empirical study.

4.1 Model Size
In comparing the model size for both languages we excluded

namespaces, comments and we tried to use the same syntax for

language constructs expressing the same concepts. For example,

the concept View is presented using its name in both models. The

total number of lines of code for Clafer –without the concrete

clafers used for validation- is almost 60% of the corresponding

textual UML model. The number of characters for the USE model

is almost twice as much the corresponding Clafer model. Since

the same number of requirements have been modeled in each of

them, this measure indicates that a Clafer model has a more

succinct representation than a textual UML one.

Table 1. Points of Comparison for the model sizes of both

Clafer and Textual UML

Point of

Comparison
Clafer Textual UML

Total Number

of Lines of

Code

150 250

Total Number

of Characters
4647 8456

4.2 Expressiveness
Clafer encourages the use of hierarchies/nesting to provide a

concise notation for modeling. For example, if we look at the

requirements for modeling the “metric” concept:

 Requirement #3: The planning processes are supported by

key financial indicators (metrics) that include sales,

markdown, turn, receipts, inventory, gross margin, and open-

to-buy.

 Requirement #18: A measure is defined for a specific metric,

UOM, and a plan version it belongs to.

 Requirement #31: MFP users can plan sales based on three

classifications; regular, promotional and clearance sales.

 Requirement #32: Markdowns are classified into regular,

promotional and permanent markdowns.

4

First, we consider expressiveness from the point of how much

information a given scope of a model can convey to end users. Fig

(1) shows a Clafer model fragment that represents the above

requirements. The abstract clafer metric having an xor group

cardinality to select among sales, markdown, turn, etc. Further

requirements evolve the model where both sales and markdown

could be further classified. This is simply supported by nesting

those possibilities. For example, the nesting of regularSales,

promotionalSales and clearanceSales implies that they are sub-

categories of sales.

Figure 1: Modeling of the Metric Hierarchy in Clafer.

However, in UML shown in Fig (2) a decision to flatten the

hierarchy and represent the possibilities as an enumeration was

taken since the metric has only one value at a time. Although this

way of modeling has fewer lines of code, we lose knowledge of

the domain where regularSales, promotionalSales, and

clearanceSales are in fact sub-categories of Sales and this makes

it less expressive. If we decide to represent this hierarchy in UML,

we will have to include OCL constraints similar to the one shown

in Fig (3) for all types of sales and markdown. This adds to the

length of the model, and reduces its readability at the same time.

Figure 2: UML modeling of Metric as an enumeration which

leads to partial loss of knowledge.

Figure 3: Alternative for Metric Modeling in UML using OCL

constraints.

Expressiveness could also be considered as the ability to model

certain requirements without any regard to whether it is done

concisely or not. Difficulty in modeling requirements mainly

occurs when trying to model system constraints. In Clafer, every

nested clafer denotes a relation. Those relations however have to

be expressed as associations or OCL constraints in UML. For

example, consider the following requirements:

 Requirement #19: Measures are classified into reference and

non-reference measures (historical ones).

 Requirement #21: A non-reference measure is meant to be

edited by a specific role.

 Requirement #22: Reference measures can’t be edited by any

role.

Looking at Fig (4), the nesting of editedBy reference below

nonReferenceMeasure clafer, implies the constraint (Req#22)

that only non-reference measures could be edited.

Figure 4: Nesting in Clafer indicates a relation.

In UML, this has to be modeled using an explicit OCL constraint

as shown in Fig (5). This not only adds to the length of the model,

but also the complexity level increases since now we have to

define association roles and then use them in the constraint.

Figure 5: Explicit OCL constraint to represent a relation.

Attempting to access a collection using an OCL expression is

certainly one of the examples showing an increased difficulty in

modeling constraints using UML compared to Clafer. Consider

the following requirements:

 Requirement #12: MFPs follow workflows for creating

/managing plans, and each workflow has one or more views.

 Requirement #13: There are views who are meant to be seen

by a single specific role, and others that could be seen by all

roles.

 Requirement #16(d): Waiting for Approval (Wa); A plan

awaiting approval by the Middle-out role.

 Requirement #33: In the view, you choose to seed, approve,

create, or review a plan.

The View has more than one planningRole associated with it

depending on the type of View. A planningRole on the other

hand can see more than one view. This means that the relation

between View and planningRole –in a general sense- is many-to-

many. In Clafer, we can distinguish which part of the View is

associated with one planningRole instance, and which is

associated with many instances. Fig (6) shows the constraint

required by requirement 16; the constraint is nested which implies

you have to be in Approval view, its syntax shows that we don’t

have to provide the full path name to fetch where specificRole is.

This feature of Clafer is called contextual name lookup. It helps in

keeping constraint expressions simpler, and save the modeler the

effort of providing the full path view to a certain clafer.

Figure 6: Clafer Name Lookup Feature.

In order to model the same constraint in OCL, we have to

introduce a new function called exists(). Since we only have one

5

association between View and planningRole and it is many-to-

many, we will be attempting to access a collection of instances of

planningRole and select one roleLevel of type MiddleOut, thus

a different way of handling the constraint is required which is

shown in Fig (7). The OCL constraint is lengthier, and more

complicated since you have to check whether a certain variable

exists or not, check its value, and then proceed to the remaining

part of the constraint.

Figure 7: OCL constraint structure which requires checking

whether a variable is null or not before executing the rest of

the expression.

4.3 Requirements Distribution
This measure could be evaluated based on the amount of

information conveyed about a certain concept from reading a

certain part of the model. Additional View requirements to the

ones mentioned above:

 Requirement #14: Each view has one or more measures.

 Requirement # 20: All measures are visible by all roles.

 Requirement #33: In the view, you choose to seed, approve,

create, or review a plan.

In Fig (8), we can see a Clafer model fragment for modeling the

View. In about 21 consecutive lines, we can see all of the

information related to the View from the explicitly defined

requirements mentioned above, and from constraints implied from

other requirements. UML captures the same requirements as

shown in Figs (9,10), but in almost 45 non-consecutive lines.

Figure 8: Fragment of the Clafer Model Fragment for the

concept View.

In the UML model, we first declare the class View. As we write

the attributes, we have to scroll up the model by about 120 lines in

order to declare the enumerations then scroll down to the middle

section of the model by about 70 lines to declare the necessary

associations. Finally, we scroll down the model again by about

120 lines to write down the required OCL constraints –Fig 10-.

Navigating through the UML model per requirement often occurs

iteratively because you need to refer to the exact names of

attributes, association role names in the constraints.

Figure 9: Fragment of the UML Model showing the View class

declaration, enumerations, and associations.

4.4 Amount of Restructuring
In order to compare the amount or type of restructuring needed by

each language to support model evolution, we chose requirements

for a random concept and we performed step-by-step Clafer and

UML modeling. Consider the following requirements for the

relation between planningRole and Target. Assume that the

clafer/class plan already exists in both models.

 Requirement #4: There are three types of planning roles in

MFPs; Top-down, Middle-out, and Bottom-up.

Clafer modeling added 5 lines of code to the model as shown in

Fig (11). UML modeling also added 5 lines of code as shown in

Fig (12), but the modeler has to navigate through one hundred

lines of code between the enumeration and the class declaration.

Figure 10: UML Model Fragment showing the View OCL

constraints.

6

 Figure 11: Clafer Modeling of Requirement 4.

Figure 12: UML Modeling of Requirement 4.

 Requirement #5: Top-down roles are typically planning

directors. They create the overall targets for the company and

set top-down group level targets for the middle out role.

Figure 13: Clafer Modeling of Requirement 5.

Clafer modeling added five lines and one constraint in the same

part of the model. UML modeling added eight lines and one

constraint scattered throughout the model; about 50 lines between

the class declaration and the associations, and 50 other lines to

write the constraints.

Figure 14: UML Modeling of Requirement 5.

 Requirement #6: Middle-out roles are typically planning

managers. They create middle-out targets.

Clafer modeling for the above requirement added only one line

while nothing was changed in the UML model, since the

association between the planningRole and Target has already

been created.

Figure 15: Clafer Modeling of Requirement 6.

 Requirement #7: Bottom-up roles are typically merchandise

planners. They create the Op (Original Plan) and create the

Cp (Current Plan) plans for approval by the middle out role.

 Requirement #8: The targets are published by superior levels

to the subsequent level: top down passes to middle out, and

middle out passes to bottom up.

 Figure 16: Clafer Modeling of Requirements 7, 8.

Clafer modeling for requirements 7 and 8 added two lines and one

constraint. However, we had to navigate to plan to add a

reference to a planningRole. Taking care of inverses manually is

a disadvantage due to the absence of associations in Clafer.

Although the navigation through the model to add those inverses

is certainly through less lines of code than UML (only 20 lines), it

adds to the types of restructuring needed for evolving models and

negatively affects the locality of change. UML modeling for those

requirements added more lines of code, and two restructuring

types; associations and constraints.

7

Figure 17: Added UML parts to model Requirements 7, 8.

4.5 Locality of Change
In this section, we will explore some evolution examples that

needed restructuring in both Clafer and UML models to be able to

analyze the locality of change associated with each modeling

language. The example discussed in the previous section is not

only related to the amount of restructuring, but also explores the

locality of change. We saw how requirements evolution is usually

localized in Clafer, while causing changes throughout the entire

model of UML.

In the final iteration of Clafer modeling, we extracted the plan

versions from nested clafers into separate abstract ones all

inheriting from the abstract clafer plan. We extracted clafers

because we found that we added constraints in different parts of

the model to ensure that we are talking about a specific plan

version. We applied inheritance since all plan versions share

common features such as the plan’s versionAbbreviation, and

the planningRole(s) which created it. Figure (19) shows two

Clafer model fragments with planVersion constraints at the top

part, and the bottom part after the application of inheritance. The

extraction of all plan versions into abstract clafers was done

directly underneath the plan clafer in the same part of the model.

Figure (18) also shows the Target model fragment before and

after the application of inheritance. Effectively, two constraints

were removed, and three were modified inside the View clafer

which is almost 40 lines below the plan clafers.

Figure 18: Clafer Model Fragment for Target before and after

inheritance showing less number of constraints.

Figure 19: Clafer Model Fragments before and after

inheritance.

4.6 Frequency of Errors
One of the main principles on which this study is based, is to

create and evolve the models without any tool support in order to

analyze the models based on the modeling language features only.

The tools for both Clafer and USE were used eventually to verify

the models, and to give insight about the types of errors that were

made and their frequency. For the Clafer models there were three

types of errors, listed below in order from highest frequency of

occurrence to the lowest.

 Missing References: Modeling using references nested

underneath clafers means that we have to take care of

inverses ourselves. The example shown in Fig (20)

demonstrates this concept. When we want to model the

requirement that a View has one or more measures, we add a

reference to the measure with clafer cardinalities inside

View, but we also have to navigate to the measure clafer,

and add a reference to View. The highest frequency of

mistakes occurred due to forgetting to include these inverses.

 Figure 18: References and Inverses in Clafer.

 Missing Constraints: This error occurred when the same

information is related to more than one concept in the model.

Consider the WorkingPlan example shown in Figs (21, 22)

with the following requirements:

 Requirement #27: In the pre-season process, the

working plan can be seeded with Last Year (Ly) data –

This represents the seeding source- to create a demand

curve on which to spread the new plan’s initial targets.

Or, you can instead choose to not seed the plan, which

allows you to create a plan that is not influenced by last

year’s performance.

 Requirement #28: If you decide to seed the plan, you

should keep track of the last seeding date

 Requirement #29: When seeding a plan, you choose

which information to seed. You can seed certain levels

8

of each hierarchy (product, calendar, location) or all

levels.

Figure 19: Working Plan Information.

In Fig (21), we capture all of the WorkingPlan requirements,

but within the context of the WorkingPlan only. However,

later requirements show that there is a Seeding view which is

in concept related to the seeding process of the working plan,

thus it should have the same constraints as shown in Fig (22).

Figure 20: Working Plan Inverses.

This error could also be related to the first one since

sometimes constraints are not only modeled in the context of

the current clafer, but apply to inverses as well. Inverses

were often missed in the preliminary versions of the model,

but they were corrected in the following iterations.

 Syntax Errors: The third error type that was encountered was

a syntax error in selecting a grouped clafer. The mistake was a

result of misunderstanding that we use the “=” operator when

trying to specify any value in a concrete clafer as shown in

Fig (21). However, the “=” operator should only be used

when trying to assign a value to an enumeration or a

reference, and the dot operator should be used when choosing

among grouped clafers as shown in Fig (22).

Figure 21: Syntax error for selecting the retailChannels

grouped clafer.

Figure 22: Correct Syntax for selecting a grouped clafer.

For the UML models, most of the errors were in modeling OCL

constraints categorized into the following types listed in a

descending order of frequency of occurrence:

 Choosing the correct constructs for OCL constraints: The

highest number of errors occurred due to difficulty in writing

OCL constraints. The most difficult constraints were that of

the View. Selecting among a collection in OCL requires

familiarity with the concepts of existential quantification or

universal quantification. These concepts are also present in

Clafer, but they are hidden due to the fact that constraints are

always placed in context. Applying those concepts, searching

for the correct sequence of using their operators, and

including all dependencies was the most difficult part of the

whole modeling experience. Examples are shown in Fig (23).

 Figure 23: OCL Constraints.

 Association Mistakes: Trying to model the Workflow concept

in UML was a bit confusing. Current workflow could be

preceded or followed by other workflows. First, we modeled

using references like Clafer, but then discovered we don’t

need the extra added constraints, and it is better to use

associations. Second, we modeled using a single association,

but also proved not to work since the proceeding workflow of

the current instance is different than the following instance.

Finally, we found that the latest version of USE supports the

use of role names on associations in constraints’ declarations.

This was the final design.

 Syntax Errors: The syntax for accessing an enumeration in

OCL is different from regular UML code, and the USE

documentation didn’t provide examples. However, a paper

published by the developers of USE [5] had an example on

using enumerations, and the mistakes were resolved. This

mistake was repeated about 6 times before the correct syntax

was found.

9

4.7 Redundancy
A modeling language should be designed so that redundancy is

minimized as much as possible or entirely eliminated. Although

the Clafer model is much more concise (150 lines) compared to

the UML model (250 lines), information redundancy was present

more in Clafer than in UML. This is due to the fact that all

relationships among Clafers are done using references, and

modeling of inverses. This sometimes introduces redundancy in

constraints. Figure (24) shows this type of redundancy when

modeling the requirement that BottomUp roles can’t create

targets. Since we are using references to establish a relation

between planningRole and Target, inverses had to be taken care

of. This resulted in modeling the constraint twice. This kind of

redundancy is not present in UML due to the presence of

associations which automatically ensures the inverse constraints

in both directions.

Figure 24: Redundancy in Clafer Models.

4.8 Validation Mechanisms
Both Clafer and UML in general support validation mechanisms.

Clafer provides concrete clafers which are instances of abstract

clafers representing real world examples. UML supports Object

Diagrams where objects are instances of the classes in Class

Diagrams, but this is only in Graphical UML. No such validation

mechanism exists for the textual notation. Consider the example

shown in Fig (25) where we represent an instance of the abstract

clafer Target. The instance is a means to help the modeler ensure

that he/she satisfies the constraints of Target, include all

mandatory nested Clafers. It is also useful in pointing missing

references or constraints when you write a real example below the

abstract part. For example if we try to write an instance of Target

and mention that it is created by a certain instance of planning

role, we can look at the abstract clafer Target and find that a

reference createdBy might be missing.

Figure 25: Concrete Clafer for Target.

4.9 Speed of Modeling
Random requirements were chosen during the modeling process

to compare the time needed to model using both languages. We

start with the Workflow requirements mentioned below:

 Requirement #23: If you are doing pre-season planning, then

it can’t be proceeded by in-season planning.

 Requirement #24: Once you are in-season planning, you

can’t return to the pre-season planning stage.

The time taken to model these requirements in Clafer took about 2

hours. This long time was taken because requirements 23, and 24

were a bit ambiguous in the sense of which abstract clafer they

belonged to.

Figure 26: Clafer Modeling for the planning processes.

We started with making a separate clafer for the planning process,

and added an XOR group cardinality with the possible types; as

pre-season and in-season planning. A reference to the planning

process clafer was added inside the Workflow clafer with

attribute cardinality 2. After reading the whole requirements, we

found that the planning process is only related to the workflows,

so we deleted the planning process clafer, and added the

information as nested group cardinality inside the Clafer model as

shown in Fig (26). UML modeling of these requirements took less

time although it involved more lines of code. This is due to the

fact that we had prior knowledge of the problem domain, and

modeled the UML model similarly.

The other requirement we chose was that of the hierarchy levels

shown below:

 Requirement #11: Users may edit data at many levels of each

hierarchy. If the data is modified at an aggregate level, the

modifications should be distributed to the lower levels

10

beneath it. This process is called spreading. If data is

modified at a level that has a higher level above it, the data

changes are reflected in those higher levels. This is known as

aggregation.

For Clafer modeling, it took about an hour to model the

requirement as shown in Fig (27). It took a couple of minutes to

add to references to HierarchyLevel instances, but it took some

time to figure how to write the constraint and whether we needed

to make spreadsToLowerLevel, and aggregatesToHigherLevel

optional clafers. Concrete clafers were included to help making

this decision; year didn’t aggregate to any level in the calendar

hierarchy, and week didn’t spread to anything. The concrete clafer

helped pointing a missing reference: levelBelongsToThis. The

level had to belong to a certain type of hierarchy; year belonged to

Calendar Hierarchy.

UML modeling of requirement #11 took more time –about an

hour and 30 minutes- although the same requirement was first

modeled in Clafer and problem domain knowledge should have

influenced the speed. Modeling the requirement ended up in more

lines of code (16 lines) –shown in Fig (28)- compared to Clafer (4

lines). Most of the time spent was trying to write a correct syntax

for the OCL constraints.

Figure 27: Clafer Modeling of Requirement 11.

Figure 28: UML Modeling of Requirement 11.

5. DISCUSSION
In this section, we attempt to give preliminary answers to the

proposed research questions as a result of the performed pilot

study. These answers are intended to be used to formulate a clear

hypothesis for the empirical study to be performed.

5.1 Evaluation

5.1.1 Model Size
What are the total number of lines of code for each of the models?

What are the total number of characters for each of the models?

Clafer model is about 150 lines and 4000 characters while the

UML model is about 250 lines and 8000 characters, which shows

that Clafer has a more succinct representation the textual UML

(USE specification).

5.1.2 Expressiveness
Were certain requirements impossible to express? Were certain

requirements difficult to express?

All requirements could be expressed using both modeling

languages. A tradeoff between complexity and length for UML

was observed when trying to model hierarchies. Group cardinality

was useful in Clafer, and associations were useful in UML. Name

lookup feature in Clafer shows great potential and needs further

investigation.

Although both languages were able to model all requirements,

there is a significant difference between Clafer and UML/OCL

modeling. Clafer is developed based on unifying concepts; clafers

and constraints. UML, on the other hand, is based on having

several concepts; classes, associations, and constraints. It was

much easier for me to model constraints in Clafer since I only

needed to learn a few keywords and how to place constraints in

the correct context. Although I was previously familiar with

UML, it was much more difficult to learn and use OCL. I think

this difference would be better tested in the empirical study since

it would definitely affect the results of familiarity of notation as

well as clarity/understandability criteria.

5.1.3 Requirements Distribution
How many parts for modeling a single requirement are distributed

throughout the model?

A Clafer model groups information related to a concept in a single

part of the model except for inverses if applicable. A USE model

however separates different parts of the same requirement

throughout the model by dividing a model into separate sections

for enumerations, class definitions, association definitions, and

constraints. This is a significant disadvantage for the modeler

from a traceability point of view. If I wanted to model a certain

requirement, I had to write an external note whether I needed to

include only a class definition or maybe also an association or a

constraint so that I wouldn’t forget to include any required part

from having to navigate throughout the model. This criterion

would affect that of clarity/understandability in the empirical

study. Having the requirements distributed across different parts

of the model might confuse the subjects or makes it more difficult

for them to understand the domain.

5.1.4 Amount of Restructuring
What type of restructuring occurred in our models? How many

lines of code were added/deleted in a restructuring step?

For Clafer modeling, restructuring occurred in several forms such

as extracting abstract clafers from nested ones to make them

separately instantiable, using nesting/hierarchies to denote a

relation, using local constraints, adding inverses, and finally

changing a group cardinality to inheritance. For UML, most

restructuring took place in the form of adding/deleting classes,

associations and constraints. Clafer modeling involved more

11

restructuring types, but fewer lines of code per a restructuring

step.

5.1.5 Locality of Change
Do changes propagate throughout the entire model? Is there a way

for global changes to be avoided?

For Clafer, changes to a requirement only propagate in case they

need to be reflected back at inverse constraints. This could be

avoided if associations were present. For UML, changes always

propagate through the model due to the USE model being divided

into separate sections for enumerations, classes, associations and

constraints.

5.1.6 Frequency of Errors
What were the most common errors made when using the

language? What was the frequency of these errors? Can we

identify the reasons behind the occurrence of these errors? Can we

find a way to avoid them?

For Clafer, the types of errors in order of frequency were missing

references, missing constraints and syntax errors. The first two

errors occurred due to inverses, and can be avoided by introducing

associations. For UML, most errors occurred in attempting to

write OCL constraints and searching for the correct syntax. This

could be minimized by giving proper training materials on OCL

before using it.

5.1.7 Redundancy
Was redundancy present in our models? Are there different types

of redundancy? Can we identify causes of redundancy? Can we

think of ways to avoid it?

Redundancy was present in both models. For Clafer, the

redundancy source was taking care of inverses due to the absence

of associations. Proposals to include associations are currently

being investigated. For the UML model, redundancy was present

in having to explicitly specify all conditions by means of OCL

constraints.

5.1.8 Validation Mechanisms
Is validation possible without tool support? If yes, how useful is

this mechanism in preventing/detecting mistakes? And how much

do the generated instances resemble the abstracted concepts?

Concrete clafers represent a validation mechanism that could be

integrated within a Clafer model without the need for tool support.

Concrete clafers help in detecting missing references or

information when placed below the abstract clafers they represent.

Concrete clafers resemble the abstract clafers in their structure

except for having one nesting level. A textual UML model on the

other hand doesn’t support a validation mechanism without tool

support.

5.1.9 Speed of Modeling
Which language allows for fastest modeling?

The answer to this question can’t be determined at this stage since

only one person was modeling, object learning effect might affect

the results, and we don’t have recording of the time taken to

model each requirement; only 3 requirements were selected.

5.2 Threats to Validity
In this section, we discuss the threats to the validity of our results.

These threats were the main reason why our results are only

preliminary, and why we need to pursue the empirical study.

Possible threats include that modeling was performed by a single

person, previous knowledge of UML class diagrams, exposure to

different training and reading materials for the modeling

languages, object learning effect since UML modeling was done

after the completion of Clafer models, and finally easy access to

Clafer developers.

6. CONCLUSIONS
In this pilot study, our research was focused on getting

preliminary results to the defined research questions. Our

conclusions are mainly classified into the following points; better

knowledge of both modeling languages, common model evolution

features, preliminary ideas about the strengths and weaknesses of

each language with respect to their support for model evolution,

and finally lessons learnt about how we would pursue the

experimental design. Since we explored most of these points in

the discussion section, this section will focus on the lessons learnt.

During the model analysis phase, we always brainstormed ideas

about extensions to the models that would give insight into what

kind of features would better highlight the advantages of each

language with regard to model evolution support, and make good

comparison points. We need to explore some features before we

go into the experimental design such as local and global

constraints in Clafer versus UML, using different group

cardinalities such as (or, mux) in Clafer and how these concepts

could be represented in textual UML, and finally using Clafer’s

name lookup feature in writing constraints within deep

hierarchies, how we would restructure those constraints if the

hierarchies change, and what are the corresponding alternatives in

UML.

Finally, some important experimental design considerations

should also be taken into account such as:

1. Subjects should only model the problem using one

modeling language to avoid the object learning effect on

the data gathered.

2. Randomization of the domain’s requirements when

giving them to the subjects should be kept to avoid any

biased results.

3. Subjects will be asked to commit a version of their

model after finishing each requirement to collect

detailed data about the amount of restructuring, locality

of change per evolution step, and speed of modeling

4. Proper training materials covering each language

constructs that would be used should be prepared and

handed off with an example before the experiment is

performed.

5. Subjects should answer a background questionnaire

regarding their modeling knowledge and experience.

6. Models should be developed using plain text editors to

avoid the effect of any tool support on the gathered data.

7. Additional evaluation criteria could be used such as the

number of different language constructs used,

familiarity of notation which could be measured based

on comparing the number of questions raised by each

subject for each of the languages, and finally the

understandability of each modeling language. This

could be measured by giving the developed models to

the subjects with a set of prepared questions about the

domain. The data gathered would be in the form of the

number of correct answers, speed of answering the

questions, and a final questionnaire given to the subjects

12

to collect qualitative data such as each subject’s

confidence level in his/her answers.

8. Mistakes should be tracked to give insight on what kind

of tool support is needed for model evolution.

7. RELATED WORK
The idea of structural domain modeling is not new. Although

there isn’t a large body of related work in this area to serve the

requirements stage, UML/OCL has been compared to another

lightweight structural modeling language called Alloy [8]. The

given comparison is not supported by a specific modeling

experience/example provided in the paper where the reader can

see the mentioned differences. The paper discusses several

differences based on published work for both modeling languages.

The first comparison point was the complexity differences

between OCL and Alloy in handling constraints. The author

argues that OCL is more complicated since it is applied in a

context which includes subclasses, parametric polymorphism,

operator overloading, and multiple inheritance. The second point

was accuracy differences. The author claims that OCL has a lower

accuracy due to the fact that it uses operations to describe some

constraints. An operation may go into an infinite loop, be

undefined, or cause problems when applied to several classes

which have an inheritance relationship. The final point of

comparison; expression differences was the only point supported

by small examples. The author claims that although UML is

generally more expressive than Alloy since it has more data types,

more ways of describing system architecture, and problem domain

modeling, Alloy has more powerful expressions in describing

relations. For example, Alloy has a transitive closure operator

which is not present UML. We are not aware of any other work

done in this area.

8. ACKNOWLEDGMENTS
I would like to thank Joanne Atlee, Krzysztof Czarnecki, Michal

Antkiewicz, and Kacper Bak for their valuable comments and

support.

9. REFERENCES
[1] F Garcia, Nelio Cacho, Claudio Sant’Anna, Sergio Soares,

Paulo Borba, Uira Kulesza and Awais Rashid 2007, On the

Impact of Aspectual Decompositions on Design Stability: An

Empirical Study. European Conference on Object-Oriented

Programming, Berlin, Germany.

[2] Helen C. Purchase, Linda Colpoys, Matthew McGill, David

Carrington and Carol Britton, 2001. UML class diagram

syntax: an empirical study of comprehension. In the

Australian Symposium on Information Visualization

(Sydney, Australia, December 2001).

[3] K. Bak, K. Czarnecki, and A. Wasowski. Feature and Class

Models in Clafer: Mixed, Specialized, and Coupled.

Technical Report CS-2010-10, David R. Cheriton School of

Computer Science, University of Waterloo, 2010.

[4] Mcintosh, P., Hamilton, M., and Schyndel, R. X3D-UML:

3D UML State Machine Diagrams. In Proceedings of the

11th International Conference on Model Driven Engineering

Languages and Systems (MoDELS), LNCS 5301, pp. 264-

279, 2008.

[5] Martin Gogolla, Fabian Büttner and Mark Richters, 2005. A

UML-based specification environment for validating UML

and OCL, EADS Transportation, University of Bremen,

Bremen , Germany.

[6] Martin Gogolla. Model Development in the UML-based

Specification Environment (USE). In Ed Brinksma, David

Harel, Angelika Mader, Perdita Stevens, and Roel Wieringa,

editors, Methods for Modelling Software Systems (MMOSS).

IBFI, Schloss Dagstuhl, Germany, 2007. Dagstuhl Seminar

Proceedings 06351. 3 pages.

[7] Oracle Retail Merchandise Financial Planning Retail, User

Guide, Release 13.0.2, December 2008.

[8] Yujing He. Comparison of the modeling languages Alloy and

UML, Department of Computer Science, Portland State

University,USA

