
1 

 

Model Evolution: Comparative Study between Clafer and 
Textual UML 

Dina O. Zayan 
Generative Software 

Development Lab 
University of Waterloo 

Canada 

dzayan@gsd.uwaterloo.ca 
 

 

ABSTRACT 

This paper presents a comparative study between two modeling 

languages; Clafer and Textual UML. In this work, we present our 

motivation for domain modeling, we perform a pilot study to 

provide preliminarily results about the differences between both 

modeling languages with respect to structural model evolution at 

the requirements stage. We conclude with lessons learnt and 

considerations to take into account with the experimental design 

for the empirical study. 
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1. INTRODUCTION 
The efficient and effective employment of model-based software 

engineering starts with creating and evolving models that capture 

elements from the problem domain precisely. In this paper, we are 

interested in domain modeling. A domain model can be thought of 

as a representation of the concepts from a domain of interest. It 

can be used to effectively validate the understanding of the 

problem domain among various stakeholders. A high-fidelity 

domain model could also serve as a domain metamodel which in 

turn can be used to create a Domain Specific Language (DSL). 

Domain models always evolve during the requirements stage 

since the domain understanding changes frequently during 

elicitation and with increased understanding of the problem. In 

this paper, we consider two languages that can be used for 

creating highly detailed and accurate domain models at the 

requirements stage: Clafer [3] and UML [5, 6].  

Clafer (Class, feature, reference) is a general purpose lightweight 

structural modeling language developed at the Generative 

Software Development Lab, University of Waterloo. Clafer is 

being designed to support domain modeling, requirements 

elicitation and specification. We choose UML to be the second 

modeling language in our comparison since it is currently the 

predominant modeling language in the software industry. 

However, since Clafer has a textual notation, we select a textual 

variant of  UML: USE (UML-based Specification). 

The rest of the paper is organized as follows: section 2 introduces 

the model structure of Clafer and textual UML, section 3 

describes the employed methodology for this research, section 4 

provides the analysis of the developed models, section 5 provides 

the evaluation of the preliminarily results out of this pilot study as 

well as possible threats to their validity, and finally section 6 

provides the conclusions. Complete Clafer and UML models are 

included in appendices at the end of the paper 

2. CLAFER AND TEXTUAL UML 

2.1 Textual UML Model 
A specification written in USE is a textual description based on 

UML class diagrams and Object Constraint Language (OCL) 

constraints. To define a USE specification, you need a text editor. 

In USE, every UML model has a model name and an optional 

body [5, 6]. The model body is divided into four sections;  

Enumeration Definitions, Class Definitions, Association 

Definitions, and Constraints. 

All enumerations have to be placed on top of the model directly 

below the model name. Class declarations form the next section of 

the model. Class declarations contain definitions of attributes. The 

third section includes the associations. There are three types of 

associations that could be included in the model; regular 

association, composition, and aggregation. USE supports the 

definition of association names, role names and association end 

multiplicities. The fourth and final section of the model represents 

the OCL constraint definitions. Comments could be added to any 

section in the model, but must be preceded with --.  

2.2 Clafer Model 
Clafer is a class modeling language with first class support for 

feature modeling [3]. It provides uniform syntax and semantics to 

class and feature models. A Clafer model consists of clafer1 

definitions and constraints. The model is not divided into separate 

sections like in USE. Clafers express the domain concepts in the 

model and the possible variability among them with the help of 

nested constraints. There are two types of clafers: 

1. Abstract Clafers: An abstract clafer declaration defines 

a new type. The set of abstract clafers represent the 

metamodel of the domain or the system under test. 

2. Concrete Clafers: A concrete clafer represents a 

possible set of instances/configurations of an abstract 

one. 

                                                                 

1 The name “Clafer” refers to the modeling language. The 

expressions “clafer”, “clafers”, “children/parent clafer” refer to 

the elements of the model written in Clafer language.  
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Clafer expresses the composition relationship by indenting child 

clafers under a parent one. There are several features associated 

with a Clafer model such as: 

1. Hierarchy/Nesting: Clafer supports hierarchies by 

means of indentation.  

2. Clafer Cardinality: defines how many instances of a 

given clafer can appear as children of the parent clafer. 

3. Group Cardinality: defines how many children of a 

given clafer can be instantiated. 

4. Inheritance: Clafer supports single inheritance. Both 

abstract and concrete clafers inherit everything from 

their superclafers.  

5. References: Clafer supports references as a means of 

defining relations between clafers. Clafer does not 

directly support associations. 

3. METHODOLOGY 
In this section we present the methodology applied to the design 

of the pilot study in a way that would benefit a longer term 

empirical study, and to make a preliminary evaluation of  Clafer 

and Textual UML as structural modeling languages with respect 

to their support for model evolution [4]. We relied on the 

principles from the Goal Question Metric (GQM) methodology 

[1]. The methodology deals with three levels: 

1. Conceptual Level; Specification of goals. Our goal was 

to design an empirical study to compare between Clafer 

and Textual UML in terms of their support for structural 

model evolution at the requirements stage. 

2. Operational Level; Formalization of goals assessment in 

terms of  research questions. 

2.1 Which language better supports structural 

modeling and expressing constraints? 

2.2 Which language better supports model evolution? 

2.3 What are the strengths and weaknesses of each 

language in general and with regard to model 

evolution in specific? 

2.4 What kind of tool support would help with model 

evolution? 

2.5 What are the recommendations for the design of 

Clafer? 

3. Quantification Level; Specification of a set of 

evaluation criteria to address the defined research 

questions –presented in Section 3.1. 

In order to design an experiment, we needed to have a hypothesis 

or initial claims about each modeling language that we wanted to 

verify, thus we decided to perform this pilot study to get 

preliminary results in the form of answers to the first three 

research questions. Moving forward with the pilot study, first a 

choice had to be made about which textual UML modeling 

specification we were going to use in the study. Our research 

explored different textual representations for UML; the Kernel 

MetaMetaModel (KM3) specification, Human Usable Textual 

Notation (HUTN), EMFText, and the UML-Based Specification 

(USE).  

We modeled a Book example using Clafer, and each of the UML 

textual representation candidates to determine the features of 

each, differences among them, and to decide which specification 

is better suited to represent UML class diagrams in a textual 

notation. We were looking for common class diagram features 

support including; class declarations, associations, 

attribute/reference cardinality, integration of OCL constraints, 

inheritance, object diagram support. HUTN only supports textual 

representation for class instances. EMFText does not support 

associations. KM3 does not support the integration of OCL 

constraints into the same model neither the modeling of 

associations, thus we chose the USE specification. However, we 

added a few extensions to USE to conform to standard UML class 

diagram modeling: we allowed cardinalities and non-primitive 

types for attributes (i.e., references). 

Next, we selected the type and scope of the system to be used in 

the pilot study. We wanted a real world example that has a 

relatively big scope to serve as a reference for evaluating Clafer 

even after completing the pilot study. Using an independent 

example helped us to avoid any bias if we had designed our own 

example. A real world example would not only have a significant 

amount of requirements that would greatly help model evolution, 

but it would also help us perform and experience the process for 

which Clafer is intended: taking a general description of a system, 

and constructing a formal version of it using Clafer. We used 

Oracle Retail Merchandise Financial Planning (Oracle MFP) 

System documents as the reference from which we elicited the 

requirements and formalized them into a requirements document 

representing the system under test [7]. 

After finishing the models completely, we checked for 

syntax/logical errors by their supported tools. We successfully 

parsed the Clafer models using Clafer tools, but the Instance 

Generator (ClaferIG) [ref] had bugs related to references, so we 

were unable to generate instances. For the UML model, we first 

commented out the extensions we made to the specification and 

then we compiled it successfully in USE tool.  

3.1 Evaluation Criteria 
We decided on the set of criteria for the evaluation of both 

modeling languages based on observable characteristics of a 

model and the common design considerations that are taken into 

account when designing a modeling language. These criteria 

would also serve as the basis for evaluation in the future empirical 

study [8].  

3.1.1 Model Size 
The model size is strongly related to the ability of a modeling 

language to provide concise representation of the requirements of 

a certain domain. What is the total number of lines of code for 

each of the models? What is the total number of characters for 

each of the models? 

3.1.2 Expressiveness 
An important concern in evaluating a modeling language is 

whether the language is expressive enough. The expressive power 

of a language is usually determined by how far facts from the 

problem domain are expressed in an easy manner. Were certain 

requirements impossible to express? Were certain requirements 

difficult to express? This criterion is also very important when 

evolving models since increased  knowledge often adds to the 

modeling difficulty. 

3.1.3 Requirements Distribution  
The ease with which a modeler creates or evolves a model 

depends on how parts of the model representing a requirement are 

distributed. As the context in which all information about a 

requirement is decreased, a modeler could easily see missing 

information about a requirement that is needed to be included. 
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How many parts for modeling a single requirement are distributed 

throughout the model? 

3.1.4 Amount of Restructuring 
Evolution of structural models occurs as a result of a series of 

modifications in the problem domain description of the system 

under test. The effect  of changes could be as small as changing 

the name of attributes, or as significant as refactoring the whole 

model. In order to provide better support for model evolution, a 

modeling language should be able to accommodate modifications 

with minimum amount of restructuring. What types of 

restructuring occurred in our models? How many lines of code 

were added/deleted in a restructuring step? 

3.1.5 Locality of Change 
Since model evolution means that formal models are being 

refactored and refined continuously, it is important that changes, 

especially small ones, remain contained within a small context as 

much as possible to ease the process for the modeler. Do changes 

propagate throughout the entire model? Is there a way for global 

changes to be avoided? 

3.1.6 Frequency of Errors 
The types and number of errors frequently occurring in a model 

help in pointing out the weaknesses of a modeling language. What 

were the most common errors made when using the language? 

What was the frequency of these errors? Can we identify the 

reasons behind the occurrence of these errors? Can we find a way 

to avoid them? 

3.1.7 Redundancy 
To be able to achieve compactness in a formal model, one of the 

most important factors is avoiding redundancy. Was redundancy 

present in our models? Are there different types of redundancy? 

Can we identify causes of redundancy? Can we think of ways to 

avoid it? 

3.1.8 Validation Mechanisms 
Structural model validation is important to the modeling process 

since it investigates how closely does the model represent the 

required structure characteristics of the system. A model should 

provide means to support the integration of a validation 

mechanism within the same representation. Is validation possible 

without tool support? If yes, how useful is this mechanism in 

preventing/detecting mistakes? And how much do the generated 

instances resemble the abstracted concepts? 

3.1.9 Speed of Modeling 
The level of comfort and the ease with which a modeler is able to 

correctly model a requirement using a given language is reflected 

in the speed with which he/she models that requirement. When 

evolving models, it is important that the language supports the 

process in a fast manner to accommodate the rapidly changing 

nature of requirements elicitation. Which language allows for 

faster modeling? 

3.1.10 Clarity and Understandability 
Since we are concerned with evaluating Clafer and UML for their 

modeling capabilities and usability at the requirements stage, their 

primary focus would be providing humans with the ability to 

exchange ideas and thoughts about models. In this context, clarity 

and understandability are always important. A model is clear if it 

corresponds to recognition patterns of the user. Since recognition 

patterns vary among different users, this would be a subjective 

criterion and hence would be tested only in the empirical study to 

have a considerable number of subjects instead of just one. 

Understandability, on the other hand, could be measured through 

how far a developed model would help the users learn about the 

domain. Of course the familiarity with the concepts and notation 

of a language would be a factor influencing both clarity and 

understandability. In order to gather data about these criteria, one 

proposed idea is to give the subjects the developed domain models 

and a prepared set of questions about the domain. We would count 

the number of correct answers, the speed of answering these 

questions, and finally ask the subjects to respond to a 

questionnaire to collect some qualitative data such as the subjects’ 

confidence level in their submitted answers. 

4. RESULTS AND ANALYSIS 
In this section we present the analysis performed on the developed 

models based on the previously defined evaluation criteria. The 

purpose of this analysis is to capture the differences between 

Clafer and UML in structural modeling, identify the strengths and 

weaknesses of each language which would finally help in the 

design of the empirical study.  

4.1 Model Size 
In comparing the model size for both languages we excluded 

namespaces, comments and we tried to use the same syntax for 

language constructs expressing the same concepts. For example, 

the concept View is presented using its name in both models. The 

total number of lines of code for Clafer –without the concrete 

clafers used for validation- is almost 60% of the corresponding 

textual UML model. The number of characters for the USE model 

is almost twice as much the corresponding Clafer model. Since 

the same number of requirements have been modeled in each of 

them, this measure indicates that a Clafer model has a more 

succinct representation than a textual UML one. 

Table 1. Points of Comparison for the model sizes of both 

Clafer and Textual UML 

Point of 

Comparison 
Clafer Textual UML 

Total Number 

of Lines of 

Code  

150 250 

Total Number 

of Characters 
4647 8456 

4.2 Expressiveness  
Clafer encourages the use of hierarchies/nesting to provide a 

concise notation for modeling. For example, if we look at the 

requirements for modeling the “metric” concept: 

 Requirement #3: The planning processes are supported by 

key financial indicators (metrics) that include sales, 

markdown, turn, receipts, inventory, gross margin, and open-

to-buy.  

 Requirement #18: A measure is defined for a specific metric, 

UOM, and a plan version it belongs to. 

 Requirement #31: MFP users can plan sales based on three 

classifications; regular, promotional and clearance sales. 

 Requirement #32: Markdowns are classified into regular, 

promotional and permanent markdowns.  
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First, we consider expressiveness from the point of how much 

information a given scope of a model can convey to end users. Fig 

(1) shows a Clafer model fragment that represents the above 

requirements. The abstract clafer metric having an xor group 

cardinality to select among sales, markdown, turn, etc. Further 

requirements evolve the model where both sales and markdown 

could be further classified. This is simply supported by nesting 

those possibilities. For example, the nesting of regularSales, 

promotionalSales and clearanceSales implies that they are sub-

categories of sales.  

 

Figure 1: Modeling of the Metric Hierarchy in Clafer. 

However, in UML shown in Fig (2) a decision to flatten the 

hierarchy and represent the possibilities as an enumeration was 

taken since the metric has only one value at a time. Although this 

way of modeling has fewer lines of code, we lose knowledge of 

the domain where regularSales, promotionalSales, and 

clearanceSales are in fact sub-categories of Sales and this makes 

it less expressive. If we decide to represent this hierarchy in UML, 

we will have to include OCL constraints similar to the one shown 

in Fig (3) for all types of sales and markdown.  This adds to the 

length of the model, and reduces its readability at the same time.  

 

Figure 2: UML modeling of Metric as an enumeration which 

leads to partial loss of knowledge. 

 

Figure 3: Alternative for Metric Modeling in UML using OCL 

constraints. 

Expressiveness could also be considered as the ability to model 

certain requirements without any regard to whether it is done 

concisely or not. Difficulty in modeling requirements mainly 

occurs when trying to model system constraints. In Clafer, every 

nested clafer denotes a relation. Those relations however have to 

be expressed as associations or OCL constraints in UML. For 

example, consider the following requirements: 

 Requirement #19: Measures are classified into reference and 

non-reference measures (historical ones). 

 Requirement #21: A non-reference measure is meant to be 

edited by a specific role.  

 Requirement #22: Reference measures can’t be edited by any 

role. 

Looking at Fig (4), the nesting of editedBy reference below 

nonReferenceMeasure clafer, implies the constraint (Req#22) 

that only non-reference measures could be edited.  

 

Figure 4: Nesting in Clafer indicates a relation. 

In UML, this has to be modeled using an explicit OCL constraint 

as shown in Fig (5). This not only adds to the length of the model, 

but also the complexity level increases since now we have to 

define association roles and then use them in the constraint.  

 

Figure 5: Explicit OCL constraint to represent a relation. 

Attempting to access a collection using an OCL expression is 

certainly one of the examples showing an increased difficulty in 

modeling constraints using UML compared to Clafer.  Consider 

the following requirements: 

 Requirement #12: MFPs follow workflows for creating 

/managing plans, and each workflow has one or more views.  

 Requirement #13: There are views who are meant to be seen 

by a single specific role, and others that could be seen by all 

roles. 

 Requirement #16(d): Waiting for Approval (Wa); A plan 

awaiting approval by the Middle-out role.  

 Requirement #33: In the view, you choose to seed, approve, 

create, or review a plan. 

The View has more than one planningRole associated with it 

depending on the type of View. A planningRole on the other 

hand can see more than one view. This means that the relation 

between View and planningRole –in a general sense- is many-to-

many. In Clafer, we can distinguish which part of the View is 

associated with one planningRole instance, and which is 

associated with many instances. Fig (6) shows the constraint 

required by requirement 16; the constraint is nested which implies 

you have to be in Approval view, its syntax shows that we don’t 

have to provide the full path name to fetch where specificRole is. 

This feature of Clafer is called contextual name lookup. It helps in 

keeping constraint expressions simpler, and save the modeler the 

effort of providing the full path view to a certain clafer. 

 

Figure 6: Clafer Name Lookup Feature.  

In order to model the same constraint in OCL, we have to 

introduce a new function called exists(). Since we only have one 
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association between View and planningRole and it is many-to-

many, we will be attempting to access a collection of instances of 

planningRole and select one roleLevel of type MiddleOut, thus 

a different way of handling the constraint is required which is 

shown in Fig (7). The OCL constraint is lengthier, and more 

complicated since you have to check whether a certain variable 

exists or not, check its value, and then proceed to the remaining 

part of the constraint.  

 

Figure 7: OCL constraint structure which requires checking 

whether a variable is null or not before executing the rest of 

the expression. 

4.3 Requirements Distribution 
This measure could be evaluated based on the amount of 

information conveyed about a certain concept from reading a 

certain part of the model. Additional View requirements to the 

ones mentioned above: 

 Requirement #14: Each view has one or more measures. 

 Requirement # 20: All measures are visible by all roles. 

 Requirement #33: In the view, you choose to seed, approve, 

create, or review a plan. 

In Fig (8), we can see a Clafer model fragment for modeling the 

View. In about 21 consecutive lines, we can see all of the 

information related to the View from the explicitly defined 

requirements mentioned above, and from constraints implied from 

other requirements. UML captures the same requirements as 

shown in Figs (9,10), but in almost 45 non-consecutive lines.  

 

Figure 8: Fragment of the Clafer Model Fragment for the 

concept View. 

In the UML model, we first declare the class View. As we write 

the attributes, we have to scroll up the model by about 120 lines in 

order to declare the enumerations then scroll down to the middle 

section of the model by about 70 lines to declare the necessary 

associations. Finally, we scroll down the model again by about 

120 lines to write down the required OCL constraints –Fig 10-. 

Navigating through the UML model per requirement often occurs 

iteratively because you need to refer to the exact names of 

attributes, association role names in the constraints. 

 

Figure 9: Fragment of the UML Model showing the View class 

declaration, enumerations, and associations. 

4.4 Amount of Restructuring 
In order to compare the amount or type of restructuring needed by 

each language to support model evolution, we chose requirements 

for a random concept and we performed step-by-step Clafer and 

UML modeling. Consider the following requirements for the 

relation between planningRole and Target. Assume that the 

clafer/class plan already exists in both models. 

 Requirement #4: There are three types of planning roles in 

MFPs; Top-down, Middle-out, and Bottom-up. 

Clafer modeling added 5 lines of code to the model as shown in 

Fig (11). UML modeling also added 5 lines of code as shown in 

Fig (12), but the modeler has to navigate through one hundred 

lines of code between the enumeration and the class declaration. 

 

Figure 10: UML Model Fragment showing the View OCL 

constraints. 
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             Figure 11: Clafer Modeling of Requirement 4. 

 

 

Figure 12: UML Modeling of Requirement 4. 

 

 Requirement #5: Top-down roles are typically planning 

directors. They create the overall targets for the company and 

set top-down group level targets for the middle out role. 

 

Figure 13: Clafer Modeling of Requirement 5. 

 

Clafer modeling added five lines and one constraint in the same 

part of the model. UML modeling added eight lines and one 

constraint scattered throughout the model; about 50 lines between 

the class declaration and the associations, and 50 other lines to 

write the constraints. 

 

Figure 14: UML Modeling of Requirement 5. 

 

 Requirement #6: Middle-out roles are typically planning 

managers. They create middle-out targets. 

Clafer modeling for the above requirement added only one line 

while nothing was changed in the UML model, since the 

association between the planningRole and Target has already 

been created. 

 

Figure 15: Clafer Modeling of Requirement 6. 

 

 Requirement #7: Bottom-up roles are typically merchandise 

planners. They create the Op (Original Plan) and create the 

Cp (Current Plan) plans for approval by the middle out role. 

 Requirement #8: The targets are published by superior levels 

to the subsequent level: top down passes to middle out, and 

middle out passes to bottom up. 

 

 

       Figure 16: Clafer Modeling of Requirements 7, 8. 

 

Clafer modeling for requirements 7 and 8 added two lines and one 

constraint. However, we had to navigate to plan to add a 

reference to a planningRole. Taking care of inverses manually is 

a disadvantage due to the absence of associations in Clafer. 

Although the navigation through the model to add those inverses 

is certainly through less lines of code than UML (only 20 lines), it 

adds to the types of restructuring needed for evolving models and 

negatively affects the locality of change. UML modeling for those 

requirements added more lines of code, and two restructuring 

types; associations and constraints. 
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Figure 17: Added UML parts to model Requirements 7, 8. 

4.5 Locality of Change 
In this section, we will explore some evolution examples that 

needed restructuring in both Clafer and UML models to be able to 

analyze the locality of change associated with each modeling 

language. The example discussed in the previous section is not 

only related to the amount of restructuring, but also explores the 

locality of change. We saw how requirements evolution is usually 

localized in Clafer, while causing changes throughout the entire 

model of UML.  

In the final iteration of Clafer modeling, we extracted the plan 

versions from nested clafers into separate abstract ones all 

inheriting from the abstract clafer plan. We extracted clafers 

because we found that we added constraints in different parts of 

the model to ensure that we are talking about a specific plan 

version. We applied inheritance since all plan versions share 

common features such as the plan’s versionAbbreviation,  and 

the planningRole(s) which created it. Figure (19) shows two 

Clafer model fragments with planVersion constraints at the top 

part, and the bottom part after the application of inheritance. The 

extraction of all plan versions into abstract clafers was done 

directly underneath the plan clafer in the same part of the model. 

Figure (18) also shows the Target model fragment before and 

after the application of inheritance.  Effectively, two constraints 

were removed, and three were modified inside the View clafer 

which is almost 40 lines below the plan clafers. 

 

Figure 18: Clafer Model Fragment for Target before and after 

inheritance showing less number of constraints. 

 

Figure 19: Clafer Model Fragments before and after 

inheritance. 

4.6 Frequency of Errors 
One of the main principles on which this study is based, is to 

create and evolve the models without any tool support in order to 

analyze the models based on the modeling language features only. 

The tools for both Clafer and USE were used eventually to verify 

the models, and to give insight about the types of errors that were 

made and their frequency. For the Clafer models there were three 

types of errors, listed below in order from highest frequency of 

occurrence to the lowest. 

 Missing References: Modeling using references nested 

underneath clafers means that we have to take care of 

inverses ourselves. The example shown in Fig (20) 

demonstrates this concept. When we want to model the 

requirement that a View has one or more measures, we add a 

reference to the measure with clafer cardinalities inside 

View, but we also have to navigate to the measure clafer, 

and add a reference to View. The highest frequency of 

mistakes occurred due to forgetting to include these inverses. 

 

             Figure 18: References and Inverses in Clafer. 

 

 Missing Constraints: This error occurred when the same 

information is related to more than one concept in the model. 

Consider the WorkingPlan example shown in Figs (21, 22) 

with the following requirements: 

 Requirement #27: In the pre-season process, the 

working plan can be seeded with Last Year (Ly) data –

This represents the seeding source- to create a demand 

curve on which to spread the new plan’s initial targets. 

Or, you can instead choose to not seed the plan, which 

allows you to create a plan that is not influenced by last 

year’s performance. 

 Requirement #28: If you decide to seed the plan, you 

should keep track of the last seeding date 

 Requirement #29: When seeding a plan, you choose 

which information to seed. You can seed certain levels 
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of each hierarchy (product, calendar, location) or all 

levels. 

 

Figure 19: Working Plan Information. 
 

In Fig (21), we capture all of the WorkingPlan requirements, 

but within the context of the WorkingPlan only. However, 

later requirements show that there is a Seeding view which is 

in concept related to the seeding process of the working plan, 

thus it should have the same constraints as shown in Fig (22). 

 

Figure 20: Working Plan Inverses. 

 

This error could also be related to the first one since 

sometimes constraints are not only modeled in the context of 

the current clafer, but apply to inverses as well. Inverses 

were often missed in the preliminary versions of the model, 

but they were corrected in the following iterations.  
 

 Syntax Errors: The third error type that was encountered was 

a syntax error in selecting a grouped clafer. The mistake was a 

result of misunderstanding that we use the “=” operator when 

trying to specify any value in a concrete clafer as shown in 

Fig (21). However, the “=” operator should only be used 

when trying to assign a value to an enumeration or a 

reference, and the dot operator should be used when choosing 

among grouped clafers as shown in Fig (22).  

 

 

Figure 21: Syntax error for selecting the retailChannels 

grouped clafer. 

 

Figure 22: Correct Syntax for selecting a grouped clafer. 

 

For the UML models, most of the errors were in modeling OCL 

constraints categorized into the following types listed in a 

descending order of frequency of occurrence: 

 

 Choosing the correct constructs for OCL constraints: The 

highest number of errors occurred due to difficulty in writing 

OCL constraints. The most difficult constraints were that of 

the View. Selecting among a collection in OCL requires 

familiarity with the concepts of existential quantification or 

universal quantification. These concepts are also present in 

Clafer, but they are hidden due to the fact that constraints are 

always placed in context. Applying those concepts, searching 

for the correct sequence of using their operators, and 

including all dependencies was the most difficult part of the 

whole modeling experience. Examples are shown in Fig (23). 

 

            Figure 23: OCL Constraints. 

 

 Association Mistakes: Trying to model the Workflow concept 

in UML was a bit confusing. Current workflow could be 

preceded or followed by other workflows. First, we modeled 

using references like Clafer, but then discovered we don’t 

need the extra added constraints, and it is better to use 

associations. Second, we modeled using a single association, 

but also proved not to work since the proceeding workflow of 

the current instance is different than the following instance. 

Finally, we found that the latest version of USE supports the 

use of role names on associations in constraints’ declarations. 

This was the final design. 

 Syntax Errors: The syntax for accessing an enumeration in 

OCL is different from regular UML code, and the USE 

documentation didn’t provide examples. However, a paper 

published by the developers of USE [5] had an example on 

using enumerations, and the mistakes were resolved. This 

mistake was repeated about 6 times before the correct syntax 

was found.  
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4.7 Redundancy 
A modeling language should be designed so that redundancy is 

minimized as much as possible or entirely eliminated. Although 

the Clafer model is much more concise (150 lines) compared to 

the UML model (250 lines), information redundancy was present 

more in Clafer than in UML. This is due to the fact that all 

relationships among Clafers are done using references, and 

modeling of inverses. This sometimes introduces redundancy in 

constraints. Figure (24) shows this type of redundancy when 

modeling the requirement that BottomUp roles can’t create 

targets. Since we are using references to establish a relation 

between planningRole and Target, inverses had to be taken care 

of. This resulted in modeling the constraint twice. This kind of 

redundancy is not present in UML due to the presence of 

associations which automatically ensures the inverse constraints 

in both directions. 

 

Figure 24: Redundancy in Clafer Models. 

 

4.8 Validation Mechanisms 
Both Clafer and UML in general support validation mechanisms. 

Clafer provides concrete clafers which are instances of abstract 

clafers representing real world examples. UML supports Object 

Diagrams where objects are instances of the classes in Class 

Diagrams, but this is only in Graphical UML. No such validation 

mechanism exists for the textual notation. Consider the example 

shown in Fig (25) where we represent an instance of the abstract 

clafer Target. The instance is a means to help the modeler ensure 

that he/she satisfies the constraints of Target, include all 

mandatory nested Clafers. It is also useful in pointing missing 

references or constraints when you write a real example below the 

abstract part. For example if we try to write an instance of Target 

and mention that it is created by a certain instance of planning 

role, we can look at the abstract clafer Target and find that a 

reference createdBy might be missing. 

 

Figure 25: Concrete Clafer for Target. 

 

4.9 Speed of Modeling 
Random requirements were chosen during the modeling process 

to compare the time needed to model using both languages. We 

start with the Workflow requirements mentioned below:  

 Requirement #23: If you are doing pre-season planning, then 

it can’t be proceeded by in-season planning. 

 Requirement #24: Once you are in-season planning, you 

can’t return to the pre-season planning stage. 

The time taken to model these requirements in Clafer took about 2 

hours. This long time was taken because requirements 23, and 24 

were a bit ambiguous in the sense of which abstract clafer they 

belonged to. 

 

Figure 26: Clafer Modeling for the planning processes. 

 

We started with making a separate clafer for the planning process, 

and added an XOR group cardinality with the possible types; as 

pre-season and in-season planning. A reference to the planning 

process clafer was added inside the Workflow clafer with 

attribute cardinality 2. After reading the whole requirements, we 

found that the planning process is only related to the workflows, 

so we deleted the planning process clafer, and added the 

information as nested group cardinality inside the Clafer model as 

shown in Fig (26). UML modeling of these requirements took less 

time although it involved more lines of code. This is due to the 

fact that we had prior knowledge of the problem domain, and 

modeled the UML model similarly.   

The other requirement we chose was that of the hierarchy levels 

shown below: 

 Requirement #11: Users may edit data at many levels of each 

hierarchy. If the data is modified at an aggregate level, the 

modifications should be distributed to the lower levels 
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beneath it. This process is called spreading. If data is 

modified at a level that has a higher level above it, the data 

changes are reflected in those higher levels. This is known as 

aggregation.  

 

For Clafer modeling, it took about an hour to model the 

requirement as shown in Fig (27). It took a couple of minutes to 

add to references to HierarchyLevel instances, but it took some 

time to figure how to write the constraint and whether we needed 

to make spreadsToLowerLevel, and aggregatesToHigherLevel 

optional clafers. Concrete clafers were included to help making 

this decision; year didn’t aggregate to any level in the calendar 

hierarchy, and week didn’t spread to anything. The concrete clafer 

helped pointing a missing reference: levelBelongsToThis. The 

level had to belong to a certain type of hierarchy; year belonged to 

Calendar Hierarchy. 

UML modeling of requirement #11 took more time –about an 

hour and 30 minutes- although the same requirement was first 

modeled in Clafer and problem domain knowledge should have 

influenced the speed. Modeling the requirement ended up in more 

lines of code (16 lines) –shown in Fig (28)- compared to Clafer (4 

lines). Most of the time spent was trying to write a correct syntax 

for the OCL constraints. 

 

Figure 27: Clafer Modeling of Requirement 11. 

 

Figure 28: UML Modeling of Requirement 11. 

 

5. DISCUSSION 
In this section, we attempt to give preliminary answers to the 

proposed research questions as a result of the performed pilot 

study. These answers are intended to be used to formulate a clear 

hypothesis for the empirical study to be performed. 

5.1 Evaluation 

5.1.1 Model Size 
What are the total number of lines of code for each of the models? 

What are the total number of characters for each of the models? 

Clafer model is about 150 lines and 4000 characters while the 

UML model is about 250 lines and 8000 characters, which shows 

that Clafer has a more succinct representation the textual UML 

(USE specification). 

5.1.2 Expressiveness 
Were certain requirements impossible to express? Were certain 

requirements difficult to express? 

All requirements could be expressed using both modeling 

languages. A tradeoff between complexity and length for UML 

was observed when trying to model hierarchies. Group cardinality 

was useful in Clafer, and associations were useful in UML. Name 

lookup feature in Clafer shows great potential and needs further 

investigation. 

Although both languages were able to model all requirements, 

there is a significant difference between Clafer and UML/OCL 

modeling. Clafer is developed based on unifying concepts; clafers 

and constraints. UML, on the other hand, is based on having 

several concepts; classes, associations, and constraints. It was 

much easier for me to model constraints in Clafer since I only 

needed to learn a few keywords and how to place constraints in 

the correct context. Although I was previously familiar with 

UML, it was much more difficult to learn and use OCL. I think 

this difference would be better tested in the empirical study since 

it would definitely affect the results of familiarity of notation as 

well as clarity/understandability criteria.  

5.1.3 Requirements Distribution 
How many parts for modeling a single requirement are distributed 

throughout the model? 

A Clafer model groups information related to a concept in a single 

part of the model except for inverses if applicable. A USE model 

however separates different parts of the same requirement 

throughout the model by dividing a model into separate sections 

for enumerations, class definitions, association definitions, and 

constraints. This is a significant disadvantage for the modeler 

from a traceability point of view. If I wanted to model a certain 

requirement, I had to write an external note whether I needed to 

include only a class definition or maybe also an association or a 

constraint so that I wouldn’t forget to include any required part 

from having to navigate throughout the model. This criterion 

would affect that of clarity/understandability in the empirical 

study. Having the requirements distributed across different parts 

of the model might confuse the subjects or makes it more difficult 

for them to understand the domain. 

5.1.4 Amount of Restructuring 
What type of restructuring occurred in our models? How many 

lines of code were added/deleted in a restructuring step? 

For Clafer modeling, restructuring occurred in several forms such 

as extracting abstract clafers from nested ones to make them 

separately instantiable, using nesting/hierarchies to denote a 

relation, using local constraints, adding inverses, and finally 

changing a group cardinality to inheritance. For UML, most 

restructuring took place in the form of adding/deleting classes, 

associations and constraints. Clafer modeling involved more 
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restructuring types, but fewer lines of code per a restructuring 

step. 

5.1.5 Locality of Change 
Do changes propagate throughout the entire model? Is there a way 

for global changes to be avoided? 

For Clafer, changes to a requirement only propagate in case they 

need to be reflected back at inverse constraints. This could be 

avoided if associations were present. For UML, changes always 

propagate through the model due to the USE model being divided 

into separate sections for enumerations, classes, associations and 

constraints. 

5.1.6 Frequency of Errors 
What were the most common errors made when using the 

language? What was the frequency of these errors? Can we 

identify the reasons behind the occurrence of these errors? Can we 

find a way to avoid them? 

For Clafer, the types of errors in order of frequency were missing 

references, missing constraints and syntax errors. The first two 

errors occurred due to inverses, and can be avoided by introducing 

associations. For UML, most errors occurred in attempting to 

write OCL constraints and searching for the correct syntax. This 

could be minimized by giving proper training materials on OCL 

before using it. 

5.1.7 Redundancy 
Was redundancy present in our models? Are there different types 

of redundancy? Can we identify causes of redundancy? Can we 

think of ways to avoid it? 

Redundancy was present in both models. For Clafer, the 

redundancy source was taking care of inverses due to the absence 

of associations. Proposals to include associations are currently 

being investigated. For the UML model, redundancy was present 

in having to explicitly specify all conditions by means of OCL 

constraints. 

5.1.8 Validation Mechanisms 
Is validation possible without tool support? If yes, how useful is 

this mechanism in preventing/detecting mistakes? And how much 

do the generated instances resemble the abstracted concepts? 

Concrete clafers represent a validation mechanism that could be 

integrated within a Clafer model without the need for tool support. 

Concrete clafers help in detecting missing references or 

information when placed below the abstract clafers they represent. 

Concrete clafers resemble the abstract clafers in their structure 

except for having one nesting level. A textual UML model on the 

other hand doesn’t support a validation mechanism without tool 

support. 

5.1.9 Speed of Modeling 
Which language allows for fastest modeling? 

The answer to this question can’t be determined at this stage since 

only one person was modeling, object learning effect might affect 

the results, and we don’t have recording of the time taken to 

model each requirement; only 3 requirements were selected. 

5.2 Threats to Validity 
In this section, we discuss the threats to the validity of our results. 

These threats were the main reason why our results are only 

preliminary, and why we need to pursue the empirical study. 

Possible threats include that modeling was performed by a single 

person, previous knowledge of UML class diagrams, exposure to 

different training and reading materials for the modeling 

languages, object learning effect since UML modeling was done 

after the completion of Clafer models, and finally easy access to 

Clafer developers. 

6. CONCLUSIONS 
In this pilot study, our research was focused on getting 

preliminary results to the defined research questions. Our 

conclusions are mainly classified into the following points; better 

knowledge of both modeling languages, common model evolution 

features, preliminary ideas about the strengths and weaknesses of 

each language with respect to their support for model evolution, 

and finally lessons learnt about how we would pursue the 

experimental design. Since we explored most of these points in 

the discussion section, this section will focus on the lessons learnt.  

During the model analysis phase, we always brainstormed ideas 

about extensions to the models that would give insight into what 

kind of features would better highlight the advantages of each 

language with regard to model evolution support, and make good 

comparison points. We need to explore some features before we 

go into the experimental design such as local and global 

constraints in Clafer versus UML, using different group 

cardinalities such as (or, mux) in Clafer and how these concepts 

could be represented in textual UML, and finally using Clafer’s 

name lookup feature in writing constraints within deep 

hierarchies, how we would restructure those constraints if the 

hierarchies change, and what are the corresponding alternatives in 

UML.  

Finally, some important experimental design considerations 

should also be taken into account such as: 

1. Subjects should only model the problem using one 

modeling language to avoid the object learning effect on 

the data gathered. 

2. Randomization of the domain’s requirements when 

giving them to the subjects should be kept to avoid any 

biased results. 

3. Subjects will be asked to commit a version of their 

model after finishing each requirement to collect  

detailed data about the amount of restructuring, locality 

of change per evolution step, and speed of modeling 

4. Proper training materials covering each language 

constructs that would be used should be prepared and 

handed off with an example before the experiment is 

performed. 

5. Subjects should answer a background questionnaire 

regarding their modeling knowledge and experience.  

6. Models should be developed using plain text editors to 

avoid the effect of any tool support on the gathered data. 

7. Additional evaluation criteria could be used such as the 

number of different language constructs used, 

familiarity of notation which could be measured based 

on comparing the number of questions raised by each 

subject for each of the languages, and finally  the 

understandability of each modeling language. This 

could be measured by giving the developed models to 

the subjects with a set of prepared questions about the 

domain. The data gathered would be in the form of the 

number of correct answers, speed of answering the 

questions, and a final questionnaire given to the subjects 
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to collect qualitative data such as each subject’s 

confidence level in his/her answers. 

8. Mistakes should be tracked to give insight on what kind 

of tool support is needed for model evolution. 

 

7. RELATED WORK 
The idea of structural domain modeling is not new. Although 

there isn’t a large body of related work in this area to serve the 

requirements stage, UML/OCL has been compared to another 

lightweight structural modeling language called Alloy [8]. The 

given comparison is not supported by a specific modeling 

experience/example provided in the paper where the reader can 

see the mentioned differences. The paper discusses several 

differences based on published work for both modeling languages.  

The first comparison point was the complexity differences 

between OCL and Alloy in handling constraints. The author 

argues that OCL is more complicated since it is applied in a 

context which includes subclasses, parametric polymorphism, 

operator overloading, and multiple inheritance. The second point 

was accuracy differences. The author claims that OCL has a lower 

accuracy due to the fact that it uses operations to describe some 

constraints. An operation may go into an infinite loop, be 

undefined, or cause problems when applied to several classes 

which have an inheritance relationship. The final point of 

comparison; expression differences was the only point supported 

by small examples. The author claims that although UML is 

generally more expressive than Alloy since it has more data types, 

more ways of describing system architecture, and problem domain 

modeling, Alloy has more powerful expressions in describing 

relations. For example, Alloy has a transitive closure operator 

which is not present UML. We are not aware of any other work 

done in this area.  
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