
McSCert TECHNICAL REPORT

Mechanics of Megamodeling: Design Patterns
and Laws

Zinovy Diskin, Sahar Kokaly, Tom Maibaum

McSCert–TR 2013–03–14 March 2013

McMaster Centre for Software Certification
Information Technology Building 101

1280 Main Street West
Hamilton, Ontario, Canada L8S 4K1

WWW page: https://www.mcscert.ca/

The McSCert technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Mechanics of Megamodeling: Design Patterns
and Laws

Zinovy Diskin1,2, Sahar Kokaly1, Tom Maibaum1

1 NECSIS, McMaster University, Canada
{diskinz|kokalys|maibaum}@mcmaster.ca

2 University of Waterloo, Canada
zdiskin@gsd.uwaterloo.ca

Abstract. A megamodel is a model, whose instances are systems of
models and intermodel relationships. To be independent of a particular
modeling language, typical megamodels reduce models and their rela-
tionships to unstructured nodes and edges, thus creating a significant
gap between abstract megamodels and their concrete instances. We ad-
dress this gap problem by mathematical means borrowed from category
theory, and propose mapping-aware megamodels, which provide addi-
tional internal structure to nodes and edges, yet remain independent of
modeling languages.

1 Introduction

A1:M1%

A2:M2%

A:M% B:N%

o:R12&

e1:R1&

e2:R2&
t:R&

Figure%1%(intro3megamod31)%Fig. 1. A sample megamodel

A multimodel is a system of models and the
relationships between them. A megamodel is
a model whose instances are multimodels.
Phrased differently, a megamodel is a schema
for a class of multimodels, e.g., the one in
Fig. 1. Names Ai, A, B refer to models, and
Mi, M , N to metamodels; colon denotes the
‘conformsTo’ relationship. Edges refer to dif-
ferent types of intermodel relationships: arc o denotes an overlap between models
A1 and A2, arrows ei are model embeddings, and arrow t specifies model B as
the result of transformation t applied to model A. (Relationships conform to
their respective metamodels, the R’s, to be discussed later.) For example, one
may think of A1 and A2 as a class and a sequence diagram, A as an UML model
including them, and B as Java code generated from A. In practical applications,
this megamodel would also contain other models Ai and their overlaps in the
direction A1, A2: think of other class, sequence, statechart and other types of
diagrams. Moreover, a typical megamodel would also contain models preceding
and succeeding those Ai via transformation/refinement chains along the direc-
tion AB. The need for building and maintaining megamodels within MDE was
put forward by Bezivin et al [3,4] and others [17]; more recent applications and
considerations can be found in [14].

2

Multimodeling is ubiquitous in MDE, and megamodeling should also be.
However, it has gained much less attention in theory and practice than one
would expect. A possible reason for this is that megamodeling is inherently
very abstract; the megamodel designer abstracts away all specialities of models
involved, and reduces models and intermodel relations to nodes and edges lacking
structural details. Not too much could be said about properties of relations
between models and laws of operations over them in such an abstract setting.
We will refer to this problem as the megamodeling abstraction gap.

A special challenge is to understand and precisely specify model relation-
ships. In the typical metamodels (R’s in Fig. 1) one can find in the literature,
relationships are defined as objects having a source and a target model, and a
type (conformsTo, transformsTo, etc.). That is, all relationships are just edges,
whereas their semantics are hidden in the type name and are not presented in
the megamodel. We come to the abstraction gap problem again.

In this paper, we address the gap problem with proper mathematical tools
borrowed from category theory. We propose a new type of megamodel, mapping-
aware (MA-)megamodel, which provides additional internal structure to a meg-
amodel’s nodes and edges, yet remains abstract and independent of partic-
ular modeling languages. We respect the two (diverging!) requirements by
zooming into ’conformsTo’ statements, i.e., predicate declarations (A,M) ∈
conformsTo ⊂ Models×Metamodels, and replacing them by typing mappings
tA : A→M , which sends elements of A to their types in M . The declaration
above does not possess an internal structure: it is nothing more than a la-
beled pair (we will say link) (A,M). In contrast, a typing mapping is a set
of labeled links (a,m) ∈ tA ⊂ A×M , which has an internal structure simi-
lar to A and B (e.g., if the latter are graphs, then tA is also a graph con-
sisting of (node,node) and (edge, edge) pairs). Similarly, we replace a labeled
link (A,B) ∈ transformsTot ⊂M•×N• (where M•, N• denote classes of models
defined by metamodels M,N resp., and t is the name of the transformations)
by a traceability mapping mt : A→ B consisting of links (a, b) ∈ A×B which
again has a structure similar to A and B. Similarly, we replace a labeled link
(A,A′) ∈ updatesTo ⊂ M•×M• with a delta specifying the update, and so
on. Expanding “flat” links into “deep” mappings moves megamodeling into a
richer structural space, in which many important properties of, and operations
on megamodels can be accurately specified.

Referring to mechanics in the title of the paper is not happenstance. When
we zoom into a megamodel’s nodes and edges, we can disassemble them into ele-
mentary building blocks. We specify a compact library of such blocks, and show
how they can be combined to reconstruct classical megamodeling constructs:
conformance, overlapping, consistency, and transformation relationships. More-
over, by combining the same blocks we can build new usable constructs, e.g.,
bidirectional transformations and heterogeneous merge. In fact, we provide a
library of design patterns for multimodel engineering, and moreover, we give
our patterns a formal semantics, and identify useful mathematical laws. We also

3

propose a notational discipline for specifying ma-metamodels and drawing them
on the back of the envelope.

In Sections 2 and 3 we introduce mapping-aware megamodels via a series of
simple examples, specify our library of elementary building blocks, and demon-
strate how they can be combined to produce more complex megamodeling con-
structs. Section 2 is devoted to basic intermodel relations (megamodeling “stat-
ics”), and Section 3 is about basic operations over models and mappings crucial
for model transformations and synchronization (“dynamics”). In Section 4 we
discuss how to adapt the framework for more general situations. We show that
richer mappings and constraints can be packaged nicely into the simple syntax
developed in Sections 2 and 3. Section 5 concludes.

2 MA-Statics: Models, their Overlap and Consistency

We begin with the two most basic blocks of the framework: a model and a model
mapping. Then we build the overlap relation between models using these blocks.

2.1 Elementary blocks: Models

Model,%A%(formally)%

Metamodel%M%(formally)%

Mary:Person

John:Person

Person:
Class

 loves: udAssoc. ls:source%

lt:target%

 :multipl.
 value=(0,1)

:for%

Class udAssoc.
source%

target%
multipl.
 value=int2

for%1
1

1

Meta3metamodel%MM%
(semi3formally)%%

 :loves

 :helps

subsetting
sub% sup%

TMM

 helps: udAssoc.

hs:source%

ht:target% :multipl.
 value=(1,3) :for%

:sub%
:sup% :subsetting

DM TM

 :helps

:ls%

:hs%

:ht%

:ht%
:hs% :lt%DA

Metamod.%
M%%

DA

tA |=%%%%%CM

TM

TMM

DM

DMM

tM |=%%%%%CMM

CMM

CM

%MM%
(abstractly)%

Model%A%%

(a)%% (b)%

1 1

CM

Fig. 2. A sample model and its formalization via graphs and graph mappings

Fig. 2(a) presents a simple object model A describing John, Mary and their
happy relations. Normally, OIDs would be anonymous, and names would be
attributes, but for simplicity, we use names as OIDs. (Some details are discussed
in footnotes 3,4 on pages 6,7.) It is easy to see that the model is a legal instance
of the metamodel M, in which the triangle-head arrow denotes subsetting.

A typical megamodeling abstraction of this is shown in (c). The diagram
specifies a relationship (A,M) ∈ conformsTo ⊂ Models×Metamodels (which we
call a link) between models. The problem with this specification is an essential

4

gap between the real model and its abstract description. The compact syntax of
UML diagrams hides a multitude of structural connections not shown in (c). Our
plan is to zoom into objects in column (a), reveal their structures and relations,
and build their ma-megamodel, whose further abstraction would be (c).

We begin with an accurate formalization of the metamodel. The latter con-
sists of types (one class and three unidirectional associations), represented by
the type graph TM in column (b1) of Fig. 2 (found in the lower stadium). The
three constraints declared in the metamodel are not types but are important
elements of the metamodel: they are represented by blank nodes (red with a
color display) connected to the types they constrain by dashed (red) arrows.
Constraints thus form the constraint graph, CM (dashed-frame in Fig. 2). The
intersection graph TM∩CM ⊂ TM consists of those types that are in the scope
of at least one constraint. Types and constraints together form the data graph
DM of the metamodel (the outer stadium).

Note that every element in DM should be typed by the respective element
of the meta-metamodel, say, MM , which is not shown (but omnipresent in M):
Person is a Class, three loops are (unidirectional) Associations, nodes (1..3)
and (0..1) are multiplicities, and the intermediate constraint node is of type
Subsetting. We omitted all nodes and arrow types but for Subsetting and its
two reference arrows ‘sup’ and ‘sub’, which we left for illustration: they are
separated from the anonymous element names by colons.

Model A is represented by its data graph DA (the upper stadium in (b1)
and (b2) of Fig. 2), which is typed over the metamodel. Types are shown
with curved links (orange with a color display), and form the model’s typing
mapping tA : DA → TM : tA(1) = likes, tA(2) = tA(4) = help, etc. Of course,
tA(Mary) = tA(John) = Person, but we omitted these links to avoid cluttering
the figure. Note that the pair (DA, tA) satisfies all constraints declared in M ,
and we write tA |= CM . It is an important statement about the model; in fact,
it is a part of the model as shown in Fig. 2, where the model frame encompasses
its data graph, the metamodel, and the constraint satisfaction statement. Now
connections between model A and its metamodel M are accurately specified.
Similarly, an accurate specification of metamodel M should include its typing
mapping tM : DM → TMM and a statement tm |= CMM . We should repeat the
same for MM and so on until we get the most basic reference model saying that
we live in the world of graphs having nodes and edges (TR provides some de-
tails. We refer to the tower in column (a1) by dots. If model A were instantiable,
the tower could be extended upwards. The pattern recurrently repeated in the
tower is a graph mapping tx : Dx → Ty from data graphs Dx (x = A,M,MM)
to the respective type graphs Ty (y = M,MM,M) one level down, such that the
constraints are satisfied: tx |= Cy.

Our work in column (b1) is abstractly specified in column (b2). Black circles
denote graphs, and arrows refer to mappings between graphs. Note that these
mappings are correct graph morphisms: they send nodes to nodes, and ar-
rows to arrows, such that their incidence is preserved. We will say that typing
mappings are structure preserving. Finally, with one more abstraction step, we

5

can denote all data embodied into models A and B by nodes A and B, and the
relationship between them described above by an arrow as shown in Fig. 2(c).
In fact, diagram/schema (c) says that the structure referred to by A contains
the structure referred to by M . The meaning of the relationship is hidden in
the label ‘confTo’ (and described in column (b2)), but what is exactly specified
is just a link (A,M) labeled by a type. We denote links by thin arrows with
bullet-tails. In contrast, mappings between structures, which themselves are sets
of links, are denoted by thick double-body arrows as shown in column (b2).

Thus, a metamodel is a pair of graphs, M = (T,C). It is assigned with two
classes of instances: i) those that are legally typed (called premodels), Inst◦(M) =
{A | tA : DA → T is a correct graph mapping} but perhaps do not satisfy the
constraints, and ii) those that satisfy all constraints (actual models) Inst•(M) =
{A | tA |= CM } ⊂ Inst◦(M). This distinction is important in formalization of
multimodel’s consistency via merge (discussed later).

Pattern 1 A model is a (total) typing mapping from a model’s (instance) data
to a model’s metadata (types).
The Laws. Typing must be a correct graph morphism, and all constraints de-
clared in the metamodel are to be satisfied.

John Mary

Data graph, DB

Student

DA

TA

DB

TB

fD
&

[=]&

Megamodel%Mul;model% MA3Megamodel%

tA |=%%%%%CA tB |=%%%%%CB%%%

MB = [TB,CB]

fD

fT

tA tB

0..2 fT|=%%%%%[%CA,%CB]&

Figure%3%(figures/sta;cs3basics3map)%

Mary John

Data graph,DA

Person
 0..1 1..3

MA = [TA,CA]

A

MA MB

f
&

B

[conf]&

[conf]&

mf
&

tM(A) tM(B)

… … …

Fig. 3. Model mapping

2.2 Elementary blocks: Model mappings

Suppose that two modelers built their own models A and B of the same domain,
shown in Fig. 3(left cell). Model A is the next step of our story: now Mary and
John love each other. Model B describes a particular view of the case, and uses its
own names. Since the referent domain is the same, it may happen that elements
in A and B refer to the same objects in the domain, and we want to make this
correspondence explicit. Suppose we know that John and Mary of model B refer
to the same real world persons as John and Mary of model A. To specify these
facts, we relate the ‘same’ elements by inter-model links shown curved in the

6

figure (orange with a color display). We will call them correspondence links, or
just corr-links. However, these links do not respect typing and map Students
to Persons. To make corr-linking type-safe, we need to match the respective
types and map class Student in B to class Person in A. Similarly, if we know
that “Mary likes John” is model B’s restatement of A’s ”Mary loves John”, we
need to match the respective inter-object links, but first we need to match their
types and map association ‘likes’ in MB to association ’loves’ in MA (where MX

denotes the metamodel of model X = A,B).3

The result (shown in the middle column) is that our correspondence map-
ping between models f : A← B consists of two parts: an instance-data mapping,
fD : DA ← DB , and a meta-data mapping fT : TA ← TB , where we write TA for
TM(A) and similarly for TB . Type-safety can now be stated as commutativity of
the square diagram: b.fD.tA = b.tB .fT for any element b of datagraph DB .

Note that all mappings involved are correct graph morphisms: we match
classes and objects to classes and objects, associations/links to associations/links,
and the incidence of nodes and arrows is preserved. To simplify notation, below
we will often only show corr-links relating arrows, links between nodes can be
inferred from them. Note also that both mappings fD,T are totally defined but
not surjective: the ‘help’-side of the domain is modeled in A but is ignored by B.
We say that A has its private part wrt. B, whereas B does not have such a part
and everything it says can be found in A. How to specify intermodel relations
when each of the models has its own private part is discussed below in Sect. 2.3.

As constraints are an integral part of models, we need to discuss compatibility
of mapping fT with constraints declared in the metamodels. Speaking syntacti-
cally, constraints are a part of the structure, and hence should be preserved as
well. This means that if metamodel MB declares a constraint c for an arrow b
(we write c[b]), then metamodel MA should declare the same constraint for arrow

a = fT (b) ∈MA, i.e., we must have declaration c[a] in graph CA
def
= CM(A). Al-

ternatively, we must at least have other CA-constraints logically imply c[a], and
hence the latter is implicitly present in MA. This is indeed the case for mapping
fT in Fig. 3 because for multiplicities we have (0..1)[a] |= (0..2)[a] for any arrow
a. In general, mapping fT translates any constraint c over type graph TB into a
constraint fT (c) over graph TA. Hence, set CB is translated into set fT (CB) of
constraints over TA. If fT (CB) ⊂ CA, or at least, CA |= fT (CB), we call mapping
fT compatible with the constraints, and write fT |= [CA, CB]; we will also say
fT is a metamodel morphism, or legal metamodel mapping. Compatibility has
an important semantic interpretation discussed in Sect. 3.1.

3 Recall that Student/likes and Person/loves are OIDs rather than attributes, and we
map OIDs to OIDs. If they were values of attribute name, we could simply exclude
them from the domain of the mapping, as we would exclude other auxiliary (wrt.
modeling as such) attributes, e.g., timestamps. On the other hand, if we do want
to pay attention to names, then we have a conflict between the models, and their
correspondence must be specified by a span of mappings, rather than by a mapping,
as will be explained in Sect. 2.3.

7

The rightmost diagram shows a further abstraction of what we did. All data
embodied by models are referred to by nodes A, B, MA and MB with two vertical
arrows showing conformance as above. Horizontal model mappings are denoted
by triple arrows because they embody data and metadata mappings (the latter
also includes a meta-metadata mapping). In addition, the metadata mapping
is assumed to be compatible with constraints. In other words, the diagram (c)
encapsulates all data specified in (b); this is denoted by label [conf].

Pattern 2 (Model Mappings) A model mapping is a pair of (total) corre-
spondence mappings between the respective data and metadata parts of the mod-
els. The result is a square of mappings.
The Laws. To ensure type-safety, the model mapping square is required to be
commutative. Moreover, translations of constraints declared for the source of a
mapping are to be implied by the constraints in the target: the target is to be at
least as constrained, perhaps more constrained, than the source.

2.3 Model overlap and consistency

2.3.1 Simple overlaps. Models A and B in Fig. 4 again present two views of
the same domain. The views overlap as Mary and John in model A and Mary
and Jo in model B correspond, and the love and like links between them do too.

However, we cannot specify this overlap by a totally defined mapping from
one model to another because each of them has its own private information:
attribute ‘age’ in A and attribute ‘gpa’ in B. In addition, correspondence links
constitute an important part of the megamodel, and we may want to annotate
them with auxiliary metadata (e.g., timestamp, authorship). Both issues (total-
ity and annotation) can be managed by reifying the correspondence links with a
new model O(verlap) as shown in the figure. Elements of O could be thought of as
pairs of elements (a, b) ∈ A×B), and total mappings, f : A← O and g : O → B,
as projections identifying the corresponding parts of the components.

Figure%4%(figures/sta;cs3overlap)%

Mary John

DA

30 20

Mary John

3.5 4.0

Mary John
DO DB

DA

tA |=%%%%%CA

DB

tB |=%%%%%CB

DO

tO |=%%%%%CO

fD
&

gD
&

[=]& [=]&

TB

Person

MA%
loves 1

MO%

age Int
Student

MB%

likes 1..2

gpa Real

TA TO

 0..1

fT
&

gT
&

P-S

l-l

fT gT

Fig. 4. Overlapping models

A pair of mappings with a com-
mon source is called a (binary) span,
model O is its head, projection map-
pings f, g are legs, and their targets
A,B are feet of the span. There are
also m-ary spans with m legs and feet.

Note that model O satisfies nei-
ther constraints CA nor CB . Indeed,
as model A misses an important fact
that Mary loves herself while model B
misses that she likes John, neither of
these two links occurs in the overlap
model O. Hence, we need to relax mul-
tiplicity in the metamodel MO to a (0..1) value.4This is a general rule: the head

4 In addition, suppose that both metamodels MA,B specify a mandatory attribute
name for Person and Student, and Mary, John, Jo are attribute values rather than

8

of the overlap span is always less constrained than its feet, and projections are
correct model mappings compatible with the constraints.

Figure%5%(figures/sta;cs3overlap3constr)%

Mary John

DA

Mary John

DO

Mary John

DB

Person

MA%

loves
1

MB%

helps 0..1

1 MO%

 0..1

Student
P-S

helps

loves

Fig. 5. Overlap via constraints

2.3.2 Complex overlap via con-
straints. In the example above, the
overlap model MO declares only a set of
“equations” (John=John, Mary=Mary,
etc.) specifying a correspondence be-
tween models A and B. However, mod-
els can interact in a more complex way.
An example is shown in Fig. 5, in which
associations in the models (‘loves’ and
‘helps’, resp.) are different, but are log-
ically related by a constraint chl: “if X helps Y, then X loves Y”.

This constraint is declared in the new metamodel MO and denoted there by
a double-body (red) arrow between the associations. Note that constraint chl is
an essentially new piece of data, it belongs to neither MA nor MB and cannot
be declared in either of them. Respectively, projection mappings are partially
defined (note links that go into projection arrows and vanish there). We call spans
partial, and overlaps complex. Finally, we show in [6] that specifying overlap of
n-models may need several m-ary (total and partial) spans (2 ≤ m ≤ n).

Pattern 3 (Model Overlap) Overlap of two models is a span of model map-
pings. The latter are either total, if overlapping amounts to correspondence equa-
tions between elements, or partial, if new constraints are introduced. Overlap of
n-models is a set of m-ary (total and partial) spans with 2 ≤ m ≤ n.

2.3.3 Consistency and merge. The upper part of Fig. 5 shows models A,B
and their overlap model O. All three models conform to their metamodels, but
together they are inconsistent. Indeed, the intermodel constraint clh (subsetting)
together with model B imply that Mary loves herself, which is missing from
model A. Moreover, this fact cannot be added to model A as it would violate
the multiplicity 1 in the metamodel. Thus, the models are inconsistent: if model
B is faithful (to reality), then Mary does not love John, if model A is faithful,
then Mary does not help herself (indeed, John’s help should be sufficient).

To make the arguments above, and those in section 2.3.1, more precise, we
need some formal details.

A metamodel is a pair of graphs, M = (T,C). It is assigned two classes
of instances: i) those that are legally typed (called premodels), Inst◦(M) =

OIDs. In order to specify overlap accurately, we need to include attribute name into
the overlap metamodel, and corrs f(Mary) = Mary, g(Mary) = Mary into projection
mappings. However, the name of object J-J must be set to an unknown value ’?’ (a
labeled null in the database jargon) with corrs f(?) = John and g(?) = Jo, which
points to a conflict between views. Hence, metamodel O must allow unknown values
for shared attributes.

9

{A | tA : DA → T is a correct graph mapping}, but perhaps do not satisfy the
constraints, and ii) those that satisfy all constraints (actual models), Inst•(M) =
{A | tA |= CM } ⊂ Inst◦(M). Suppose we have a heterogeneous collection A of
models {Ai | Ai∈Inst•(Mi), i = 1, 2, ..n} with a set of their overlap spans. Let⊎
DA denote the merge of all model datagraphs modulo their overlap, and sim-

ilarly
⊎
TA is the merge of all type graphs. Constraints can also be merged

logically: we first translate them to the type graph
⊎
TA, and then integrate

them as logical theories over
⊎
TA [15]. We thus obtain a merged set of con-

straints
⊎
CA, and a merged metamodel MA = (

⊎
TA,

⊎
CA). It can be proven

that the merged data can be correctly typed over the merged metadata, and we
thus have a premodel tA :

⊎
DA →

⊎
TA ∈ Inst◦(MA). However, as our example

shows, this premodel can violate constraints
⊎
CA, and thus fall outside the set

Inst•(MA). Examples and details can be found in [23] for the homogeneous case,
and in [6] for the heterogeneous case. We see that consistency of a multimodel
is a property of the span specifying their overlap!

Pattern 3 completed: The Laws. The merge of a system of models modulo
their overlap span is a correct premodel. However, it can violate inter-model
constraints. This is what we call inconsistency.

3 MA-Dynamics: Model Transformations

There are two fundamental operations over models: computing a view of a given
source, and generating a source from a given view. The roles played by the view
models in these scenarios are entirely different: the view is descriptive for the
former, and prescriptive for the latter (cf. analytical vs. synthetic views in [20]).
We will consider these operations in Sections 3.1 and 3.2 resp. In Section 3.3 we
show that complex model transformations can be seen as combinations of the
two operations.

To differentiate between given (basic) objects, and those computed with an
operation (derived), we will use the following formatting (different from the
static figures above). Basic models and mappings are shaded, and their nodes
and links are solid. Derived models and mappings are blank, and their nodes
and links are blank and dashed (and additionally blue with a color display).

3.1 Descriptive views

We return to the case described in Fig. 3, but now consider it in a different con-
text (see Fig. 6). We have two metamodels, M = (TM , CM) and N = (TN , CN),
and a mapping v : TM ← TN that describes N as a view of M . We want to con-
sider this mapping as a view definition in the technical sense, i.e., as a declarative
specification that can be executed for any instance of M , e.g., model A shown
in the figure. The result should be an instance of N , model V = getv(A) (read
“get the view v of A”). In contrast to Fig. 3 where model B and mapping f
are given, model V and traceability mapping traceV are to be computed as a
database view would be.

10

The computing procedure works as follows. We take an element n ∈ TN , find
all elements a in DA whose type is v(n) and copy them to V with type n. In
detail, if tA(a) = v(n), we create a copy a∗ ∈ DV and set tV (a∗) = n (the figure
shows how it works). Thus, all elements in graph DA, whose types belong to
the image v(TN), are copied into graph DV and respectively retyped. It is easy
to see that the graph structure (incidence of nodes and arrows) is preserved as
soon as both mappings, v and tA, are structure preserving. This fact is formally
proven in category theory, where the operation we have just described is called
a pull-back (arrow tA is pulled-back along arrow v) [1]. We have thus specified a
function getv : Inst◦(M)→ Inst◦(N).

Note that pulling back also produces a traceability mapping traceV : DA ← DV

such that the entire square diagram commutes. This means that the pair (v, traceV)
is a (pre)model mapping vA : A← V .

John Mary

Student

Megamodel%Mul;model% MA3Megamodel%

N

tA

0..2

Mary John

DA

Person
 0..1 1..3

M

DV

v

Figure%6%(figures/dynamics3desc)%

tV

A% V%
:getv&

DA

TM

DV

TN

[=]&

tA |=%%%%%CM
tV |=%%%%%CN%%%%%

v|=%%%%%[%CM,%CN]&

vA%
&

traceV

traceV

M% N%v

Fig. 6. Operation of view computation

Does view getv(A) satisfy the constraints CN declared in metamodel N?
Suppose c[x] ∈ CN is a multiplicity constraint for arrow x ∈ TN , which is
translated into a constraint v(c) = c[v(x)] for arrow v(x) ∈ TM . If A |= v(c),
then getv(A) |= c as view computation amounts to copying and retyping of
the corresponding part of DA. But, a legal M -instance A |= CM , and so if
CM |= v(c) (the case in our example), then getv(A) |= c as well. In other words,
if the view definition mapping is compatible with the constraints, then pulling-
back a legal model A produces a legal view model V = getv(A), and we have
a total function getv : Inst•(M)→ Inst•(N). It gives a semantics for metamodel
morphisms, which we discussed in Sect. 2.1.2 purely syntactically.

The middle column in Fig. 6 presents our considerations in an abstract way
as the diagram operation of view execution (note the chevron labeled :vExe):
it takes two solid (black) arrows as its input, and produces two dashed (blue)
arrows as its output. The colon in the chevron’s label says that we specify an
application instance of the operation: for another source A′ and another view
definition v′, we would have another instance of vExe and another computed view
V ′ = getv′(A

′). Note also that constraint satisfaction pre-conditions for vExe are
shaded (with red) while derived post-conditions are not shaded (and blue). Also,
not shown in the diagram, but important, is the following fact: if mapping v is
injective (a precondition that we normally assume by default), then mapping
traceV is injective too (because pullbacks preserve injectivity [1]).

11

Finally, the rightmost column presents an even more abstract setting: mod-
els are encapsulated as nodes, and model mappings (= commutative squares of
graph mappings) as arrows, from which metamodels and their mappings can be
projected out. As before, vertical arrows are just links. The shaded chevron de-
notes an operation abstracted from the blank chevron in the middle column: the
latter works with graphs, whereas the former works with models and metamod-
els. Note that the direction of the operation is diagonally-opposite to the direc-
tion of the view definition mapping; for the function getv : Inst•(M)→ Inst•(N),
this opposition is somewhat striking: the directions of getv and v are opposite.
Our fine-tuned work with constraints is also embodied in the diagram: if v is a
metamodel morphism and A a (legal) model, then V is also a model, and VA is
a legal model mapping.

The view V = getv(A) possesses a remarkable property: it is a maximal
model amongst models that can be mapped to A over v, e.g., model B in Fig. 3
is mapped to model V in an evident (and uniquely determined!) way. Some
reflection on how the pullback works shows that it is a general property: for any
model B and mapping f : A← B such that fT = v (think of node B placed to
the north-east of node V), there is a unique mapping !f : DV ← DB such that
both triangles commute: !f ; tV = tB and !f ; traceV = fD. In other words, any
mapping f : A← B factors through getv(A) and we have f =!f ; vA.

Pattern 4 (Descriptive views) A view definition is a metamodel mapping
v : M ← N . Its execution goes in the opposite direction: it maps pre-instances of
the target metamodel to pre-instances of the source metamodel, and is specified
by a function getv : Inst◦(M)→ Inst◦(N).
The Laws. (a) Legal instances are mapped to legal instances as soon as the view
definition mapping is compatible with constraints declared in the metamodels:
CM |= v(CN). Then getv is a total function Inst•(M) → Inst•(N). (b) For any
view definition v and model A, the view getv(A) is maximal amongst models
mappable to A over v.

3.2 Prescriptive views

In the example above, model A was given and model V = getv(A) served a purely
descriptive function: to present a view of model A, in which ‘helps’ relations
are ignored, and other elements are retyped. In other words, the source A was
primary while the view V was secondary. A typical MDE example is when a
model is reverse engineered from code (the challenge of this task is to find a
proper view definition mapping).

Now consider the opposite situation of code generation: the view model V is
given and primary, while the source (code) A is to be built. For example, suppose
that Mary wants to achieve (implement) the situation in which John helps her
as specified by the ”platform-independent” model V (see Fig. 7 left column).
For this goal, she is going to use the “platform” of personal relations (specified
by metamodel M), which satisfies the implementation law “If X loves Y, then X
helps Y”. This law is specified by a view definition mapping v : M ← N shown

12

in the figure: If “X loves Y” in some instance A of M , then “X helps Y” in the
view getv(A) according to the algorithm of view execution specified above. Thus,
Mary should build a model A over M such that V = getv(A). Of course, Mary
would be interested in building a minimal A satisfying the requirement, and
it is enough to place in A two objects, John and Mary, and ‘John-loves-Mary’
link between them. This link would implement ‘John-helps-Mary’ link as shown
by mapping traceA in Fig. 7 (ignore the second link in graph DA and objects
inside the outer square DVNMDA for a while). Thus, A can be considered as a
(platform-dependent) model generated by V over implementation definition v,
and we write A = genv(V).

Megamodel%MA3Megamodel%

A% V%

:genv&
DA

TM

DV

TN

traceA%

[=]&
tA |=%%%%%CA tB|=%%%%%CB

v|=%%%%%[%CM,%CN]&

Mary John
DA

John Mary

DV

Student N

1..3

Figure%7%(figures/dynamics3presc)%

Mary John

v!

DV*

genΔ"v"(B)

Gettracev(A)

Mul;model%

Person
 1

M M% N%v

traceA%

!A%traceV*%

vV%
&

tA tV

Fig. 7. Operation of source generation

This would be the end of the story except for the multiplicity constraint in M
requiring every person to love somebody. To satisfy this constraint, Mary must
add to model A either a link from herself to John, or a self-loop (or both, but
this would violate both the multiplicity 1 and minimality of A). Figure 7 shows
the case in which Mary chooses ‘Mary-loves-John’. (In the model synchroniza-
tion jargon, such a choice is called a (synchronization) policy.) However, now an
extra help-link appears in the view V ∗ = getv(A) (note the chevron :vExe, which
“computes” view V ∗), so that Mary needs to help John, which is not supposed by
the original view V . Thus, the platform of personal relations with its constraint
is not suitable for implementing given view V exactly; V ∗ 6= V . Nevertheless,
implementation works in a weaker sense: view V ∗ properly includes V via em-
bedding !traceA

: V ∗ ← V ensured by V ∗’s maximality (it is easy to prove that if
traceA is injective, then !traceA

is injective too). We will refer to this inclusion
as the GenGet law, as it specifies a common case: to implement all the necessary
requirements, we may need to implement something extra. Importantly, this ex-
tra should appear in our computation only once: if we implement V ∗ and build
A∗ = genv(V ∗), then a reasonable implementation must ensure A∗ = A because
all implementation details are already reflected in V ∗. On the other hand, given
a source A and its view V = getv(A), we should have V = getv(genv(V)) so that
the source and the view are synchronized after, at most, two synchronization
steps. We call these conditions the GenGetGen and the GetGenGet laws (see [9]).

13

The middle column in the figure presents our considerations in an abstract
way as a diagram operation of source generation (note the :sGen-chevron in the
middle): it takes two solid (black) mappings and produces two dashed (blue).
The rightmost column is analogous to the rightmost column in Fig. 6, but works
in the opposite direction from the view to the source.

Pattern 5 (Prescriptive views) Implementation of an instance of metamodel
N within a platform specified by M is an operation opposite to view execution,
and unrolls over a view definition mapping v : M ← N . Constraints in M may
prevent the existence of a unique minimal implementation; then a policy is re-
quired to choose one implementation amongst all possible.
The Laws. Implementation is specified by a function genv : Inst•(M)← Inst•(N)
satisfying GenGet, GenGetGen, and GetGenGet laws.

3.3 Model transformations

A

N

B

t%:%transf%

B
A

vtA
&

wtV
&

vtV
&

wtB
&

Figure%8%(figures/trafos33rows)%

t%:%transf%
M St

N M St
wt&vt&

V

W

vt& wt&

Fig. 8. Assembling model
transformations

Abstractly, a model transformation is a function
t : Inst•(M)→ Inst•(N) sending instances of meta-
model M to instances of metamodel N . As it should
work for all instances, there should be some underly-
ing correspondence between metamodels, r : M → N ,
specifying how types are related. We want to treat r as
a declarative definition of t, and computation of t(A)
as the execution of r for the instance A ∈ Inst•(M),
in analogy with how we considered view execution
and source generation above. However, neither of the
metamodels could be considered a view of the other in
general. There may be types in M not relevant for the
transformation, which we will refer to as private for M
and its instances, and dually there are private types in
N . Thus, a more practically applicable case is when a
transformation t is based on a common ”shared view”
metamodel St in-between M and N (Fig. 8) with view
definition mappings vt and wt.

The span of view definitions can be executed for an arbitrary model A ∈
Inst•(M) as shown in the top row of Fig. 8. We first compute the intermediate
view V = getvt

(A) by treating vt descriptively. Then we generate model B
from this view by treating wt prescriptively. Remarkably, the same span can be
executed in the opposite direction as shown in the lower row: at first, mapping
wt is executed descriptively, then vt is executed prescriptively. If both mappings
are compatible with constraints, both transformations map legal instances to
legal instances. Note also that traceability mappings between models are also
spans. Thus, with suitable technological support, the span can be executed in
either direction providing bidirectional transformation. This facility is especially
effective if both models can be updated, and the changes are to be propagated
to the other side in an incremental mode. This scenario is discussed in the TR.

14

Pattern 6 A model transformation definition is a span of metamodel mappings,
which can be executed in both directions.
The Laws. A full set of laws is an open question. Two simple yet basic laws,
identity propagation and weak invertibility, are specified in [7].

3.4 Incremental update propagation

We will redefine our view and source computation operations get and gen to
work incrementally: now they will take models and their updates on one side
(input), and produce updates and updated models on the other side (output).

Incremental%view%computa;on%
Mul;model%% MAMgm%

Figure%10%(figures/dynamics3sync)%

Mary

DB%

John

Mary John

20 30

DA’

Mary John

DB’

ΔB% ΔA%

Incremental%source%genera;on%
Mul;model%%

Mary John
20

Mary
DB%

30

DA

John

20 ?

DA’

Mary Jon

DB’
Mary Jon

ΔB% ΔA%

Mary John
20 30

DA

Fig. 9. Incremental view computation and source generation

Incremental view computation. We continue our love story from Fig. 6.
Suppose that Mary finally loves John, so that model A is updated to state A′

shown in Fig. 9 (we omit metamodels and typing). Updated model B′ could
be recomputed from scratch, but it is better to compute it incrementally by
propagating the A-update to a B-update. The A-update is specified by partial
mapping∆A, which shows that Mary’s self-loop vanished (mapping is not defined
on Mary), and a new link (beyond the range of the mapping) emerged. A link
finished at the mapping rather than at D′A, and a link started at the mapping
rather than at DA, are just our visualization means for the formal statements
that the mapping is not defined for the former, and the mapping’s image does
not include the latter. These data can be directly propagated to the view side
as shown in the figure: mappings make everything explicit and straightforward.
Note that propagation also produces an updated traceability mapping.

Incremental source generation. The view update mapping ∆B in Fig. 9 says
that John has left the stage, and a new person Jon together with two new links
has emerged. (Note that in both figures, matching objects before and after the
update is determined by the update mapping rather than by names.) This update

15

again straightforwardly propagated to the source side. The only difference from
the previous case is that as Jon is a new object, its attribute ’age’ is set to an
unknown value ”?”.

Pattern 7 Incremental update propagation is specified by tile operations in the
plane Correspondences × Updates.

4 Beyond simple examples

We will briefly sketch a mathematical framework, in which simple ma-megamodels
introduced above can be given a precise formal meaning. The framework is based
on category theory for two reasons. First, any mathematical framework taking
mappings seriously is inevitably categorical. Second, although pattern compo-
sition is not our main concern in this paper, it is an important feature of the
framework, and mathematics of composition is again category theory. Due to
space limitations, only a brief sketch is given. Details can be found in our TR.

The presentation in this section is a trade-off between an accurate formu-
lation of mathematical results, and readability of the text by a non-categorical
audience. Achieving neither of the goals is quite possible, but we tried to do
our best within the page limits. We assume the reader is familiar with basic
definitions of a category and a functor; their explanation customized for the
MDE audience can be found in [12] (look for the framed boxes Background).
Other categorical concepts we use will be informally explained and we provide
references.

In the next section we describe a general setting for premodels and typing.
In Section 4.2 we argue that intermodel relations very often involve models’
derived elements and queries computing them, and incorporate queries into the
framework. Section 4.3 is about constraints.

4.1 Beyond graphs but inside category theory. MA-scenarios we discussed
above have been unraveling in the universe of (directed) graphs and graph map-

pings. This universe is defined by the metamodel Nodes ⇔ Arrows , which is

itself a graph (by default, the arrows have multiplicity 1). Other graph-like ob-
jects can be defined similarly. For example, graphs with arrows between arrows

(2-graphs) are given by metamodel Nodes ⇔ Arrows ⇔ 2-Arrows , edge-labeled

graphs by Nodes ⇔ Arrows → Labels , etc. Any such metamodel also fully de-

fines mappings between its instances: nodes are mapped to nodes, arrows to
arrows, labels to labels, etc., so that the incidence is preserved. Thus, if M is a
graph treated as a meta(-meta-...) model, its class of instances Inst•(M) comes
with mappings between them. We denote this universe of instances and mappings
by GM, and call its members M-graphs and M-graph mappings.

Analysis of our arrow diagrams in Sections 2 and 3 shows that similar di-
agrams can be built for general graph-like structures defined by the framed
metamodels above. Indeed, CT-proves that for any graph M, the universe GM is
a category called a presheaf topos [1], and any presheaf topos is similar enough

16

to the presheaf topos of ordinary graphs. In particular, M-graphs can be retyped
via pullbacks as described in Section 3.1, and Patterns 4,5 with their associated
laws are valid for M-graphs (so far, in the constraint-free setting).

As M-graphs are so similar to ordinary graphs, we will often skip index and
prefix M, and call them simply graphs.

4.2 Beyond simple constraints We begin with a slightly more general for-
mulation of the constraint mechanism considered in Section 2.1. Given a graph
T (to be thought of as a type graph), a constraint (declaration) over T is a pair
c = (Pc, Sc), where Pc is a predicate (like ”multiplicity (0..1)” or ”subsetting”
in Fig. 2), and Sc is a list of T ’s elements — the scope of the constraint. In
the linear notation, we normally encode a constraint by a formula Pc(Sc), e.g.,
P (x, y, y)., and we will aslo often write constraints as Pc(Sc). Each predicate has
its predefined arity: a single arrow for any multiplicity, two arrows with a com-
mon source for subsetting, two opposite arrows between two nodes for declaring
mutual invertibility of two arrows, and so on. Different constraints may use the
same predicate, e.g., we may have several multiplicity and several subsetting
declarations. On the other hand, the same element in T may occur in the scopes
of different constraints like, e.g., loops ’helps’ and ’loves’ in Fig. 2. A constraint’s
scope is actually an assignment of T ’s elements to elements of the arity shape.
For example, in the subsetting declaration reproduced in Fig. ??, the type graph
elements, node n and arrows a, b, are assigned to the respective elements of the
arity shape graph: node ’Subset’ and arrows ’sup’ and ’sub’. This assignment is
a correct graph mapping from the arity shape graph to the type graph.

Thus, constraint declarations are specified by graph mappings and can be
reproduced in any universe GM. Moreover, it can be shown that semantics of
constraints can also be defined via mappings, and hence can be defined in any
GM (all that is needed is having pullbacks, and all presheaf toposes do have
them) — details can be found in [11,22]. Paper [11] also proves that the law
of Pattern 4 holds in the general GM-setting, and hence the laws of Pattern 5
remain valid too.

In addition, as any presheaf topos is closed under colimits (CT’s way to say
“merge”), M-graphs can be merged modulo spans specifying their overlap, and
hence our laws for overlap and consistency can be formulated for GM as well.

4.3 Queries and q-mappings All mappings we considered so far consisted of
links relating a model’s element to a model’s element. Such simple linking only
covers a part of practically interesting cases. Often, an element in a model, say,
B, is to be linked to a derived element in another model, A, i.e., an element
that is not present in A but can be computed with a relevant query against A.
For example, in Fig. 4, it may be that class Student of model B corresponds
to the class of Persons whose age is less than 30. Or, in Fig. 6, Students of B
corresponds to those Persons of A who help at least two other Persons. These
derived classes in A can be computed by simple queries, but we may think
of correspondences involving complex queries as well. Consider our example of
view execution in Fig. 6, where mapping v identifies types Student and Person.

17

Suppose now that only young Persons with age less than 25 can be Students,
and inter-Student relation ’likes’ is the same as ’love’ between young Persons.
This new situation is specified by a mapping v in Fig. 10. The target of the
mapping is metamodel M augmented with the query specification given by the
arrow diamond in metamodel M++. In detail: arrow i refers to inclusion of the
set of integers less than 25 into the set of all Integers, and the two remaining dash
arrows and blank node specify the evident Select-From-Where query Q against
class Person, which results in class Person∗ (of young persons) subsetting Person.
For any model A typed over graph TM , this query can be executed and produce
an augmented model A+ = [[Q]](A) typed over M+ = Q(M) as shown in the
figure: metamodels M++ (shown) and metamodel M+ (not shown) have the
same graph but different constraints.

%%

DA
+&=&[[Q]]%(DA)

Person

M++%%

loves 1..*

age
Int Student

N%

likes
 1..3

%Fig%11%(figures/beyond3queries)%

Person*

Int< 30

loves* 1..*

Mary John

30

Mary* Mary*
DB%

20

tA+&=&[[Q]]%(tA)

Fig. 10. View computation with queries

Let us discuss the differ-
ence. Note that constraints and
queries can interact. Even if any
Person must love somebody, it
should not necessarily hold for
Person∗, and hence the multi-
plicity of the loop ’love∗’ should
be set to (0..1). Thus, meta-
model M+ = Q(M) obtained
from metamodel M by adding
the query definition would have
the derived multiplicity (0..*) for
the loop ’loves∗. However, the fig-
ure shows a stronger multiplicity
(1..*) which does not belong to
M+ = Q(M). This constraint is
a new datum added to metamodel M+, which makes it a different metamodel
M++. In detail, TM++ = TM+ but CM++ = CM+ \ {C0..1} ∪ {C1..∗}. The view
definition mapping is compatible with this constraints but incompatible with
C0..1.

A view definition involving queries is executed in two steps presented by
two diagram operations in Fig. 11(a1). First, the query is executed as explained
above (the left tile in the figure). Then the result is retyped as explained in
Sect. 3.1 (the right tile). We can encapsulate the two steps within one diagram
operation as shown in Fig. 11(a2). An ordinary model mappings is shown in
Fig. 11(b). Horizontal arrows now denote q-mappings, which consist of q-links,
i.e., by definition, links relating an element in the source model with a basic or
derived element in the target model. Such derived elements are, in fact, queries
to the target model, hence letter ’q’. In paper [10] we show that q-mappings can
be composed and have other properties making their encapsulation consistent:
one can manipulate q-mappings as if they were ordinary mapping. Patterns
formulated in Section 3 work for the q-mappings as well.

18
DA

⊂ - Q(DA) �
vQ(A)

v�Q(A)

qEx↗↗e r↗↗tp

M

tA

?
⊂ - Q(M)

Q(tA)

?
� v

N
?

A ⇐
vA
= = v�A

vEx↗↗e

M

tA

?
⇐===========

v
N

v�tA

?

DA
⊂ - Q(DA) �

f
B

M

tA

?
⊂ - Q(M)

Q(tA)

?
� v

N

tB

?

(a1) (a2) (b)

Fig. 11. View mechanism (a1, a2) and a general q-mapping (a)

We showed in [5,10] that queries can also be incorporated into the MA-
framework. A query language is modeled by a categorical construct called a
monad [18]. Mappings that send source model elements to queries against the
target model are known as Kleisli mappings. Thus, view definitions are Kleisli
mappings. Kleisli mappings can be composed and form a category (the Kleisli
category of the monad). Moreover, since ordinary (typing) mappings can be
pulled back over a Kleisli mapping (producing a Kleisli mapping for traceability),
our dynamic patterns and laws defined in Section 3 hold for view definitions
based on complex queries (if the latter satisfy some monotonicity condition [10];
fortunately, widely used Select-Project-Join queries are monotonic).

Also, as Kleisli categories are closed under colimits, our model overlap pat-
terns and laws hold for cases when one or several legs of the overlap span are
Kleisli mappings, i.e., involve queries. We conclude that all static and dynamic
patterns work for complex mappings involving queries.

A formal framework integrating constraints and queries in the general GM-
setting is described in [5]. It is based on the notion of fibration [1], which is,
basically, CT’s way of saying “view execution”, as specified in the rightmost
diagram in Fig. 6 (see [8] for details).

4.4 Summary An MA-megamodeling framework is a triple F = [G,Q, (C, |=)],
where G is a presheaf topos determined by some graph M— (meta-metamodel),
Q is a cartesian monad on G→ providing a query language, and pair (C, |=)
is a constraint language: functor C : G→ Set gives its syntax, and a family
of relations |=T , T ∈ G, provides semantics. These data defines a fibration
p•Qp
•
Qp
•
Q : Mod•QMod•QMod•Q →MMMMod•QMod•QMod•Q, where Mod•QMod•QMod•Q and MMMMod•QMod•QMod•Q are two respective Kleisli cat-

egories.

5 Related work

In different incarnations, megamodeling (Mgm) has appeared in several domains.
In databases, it is known as model management[2], focusing on operations on
models and model mappings, but not considering megamodels as such. Mathe-
matical foundations are based on the relational data model.

In Algebraic Specifications, institution theory (ITh) [16,19] can be related to
Mgm. Metamodels are logical theories, whose classes of models (instances) are
categories. View definitions are theory morphisms. Our Pattern 4 law is a basic

19

postulate in ITh (the Translation Axiom). Typing mappings between models
and theories are ignored in ITh, and multilevel constructions (say, metamodel,
model, instance) are not considered (see [6] for a more detailed discussion).

A framework directly using models-as-graphs without encoding them into
logical theories was developed by the graph-transformation (GT) community
[13]. Unlike institutions, typing is fundamental in GT, but the approach is mainly
operational via graph-grammars; declarative aspects of megamodeling operations
(our view and transformation definition mappings) are typically not considered
in GT.

In software engineering, the importance of megamodels for MDE was em-
phasized by Bezivin et al [3,4]. They do not consider megamodels formally, but
focus on megamodeling applications and use in MDE. A recent promising tech-
nological application for Object/XML mapping can be found in [14]. They focus
on the linguistic architecture of software products and develop a megamodeling
framework with corresponding language and tool support. Foundations of mod-
eling and, in fact, megamodeling itself, are discussed in [20] in a very general
setting, which is too abstract for dealing with patterns and mathematical laws.

Initial elaboration of the ideas presented in the paper can be found in [8]
but in a different context of model synchronization. Overlap and consistency are
discussed in detail in [5] (with examples related to multimodeling via UML),
but compatibility of mappings with constraints is not considered there. Map-
pings involving queries are elaborated in [10], but model transformations are not
considered.

6 Conclusion

In this paper we addressed the problem of an abstraction gap between megamod-
els and their instances (multimodels). We proposed MA-megamodels, which pro-
vide additional internal structure to the usual megamodel elements (nodes re-
ferring to models, and edges referring to intermodel relationships) yet remain
independent of modeling languages.

MA-megamodeling allowed us to disassemble megamodels’ nodes and edges
into elementary blocks. Then we combined these blocks to restore classical meg-
amodeling constructs: conformance, overlapping, consistency, and transforma-
tion relationships. We have also shown that new constructs can be built by
combining the same blocks, e.g., bidirectional transformations. In this way, we
provided a library of design patterns for megamodel engineering, and outlined
a mathematical framework in which these patterns can be provided with formal
semantics. Though the full details are not present in the paper, wherein we con-
centrate on the concepts and demonstration of their adequacy, they can be filled
in using standard concepts of category theory.

Going forward, we intend to elaborate these ideas both theoretically and
practically. For the latter, we are going to explore the engineering applications of
the MA-megamodeling approach to multimodeling within the NECSIS research
network — a collaborative project between academia, the automotive industry

20

(General Motors Canada) and IBM Canada, [21] which focuses on MDE-based
design of embedded systems.

21

References

1. Barr, M., Wells, C.: Category theory for computing science. Prentice Hall (1995)

2. Bernstein, P., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: SIGMOD Conference. pp. 1–12 (2007)

3. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and
modeling in the small. In: MDAFA. pp. 33–46 (2004)

4. Bézivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proceedings
of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development
workshop, 19th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications. (2004)

5. Diskin, Z.: Towards generic formal semantics for consistency of heterogeneous mul-
timodels. Tech. Rep. GSDLAB 2011-02-01, University of Waterloo (2011)

6. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous models
for global consistency checking. In: MoDELS Workshops: Selected papers. LNCS,
vol. 6627. Springer (2010)

7. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state- to delta-based bidirectional model transformations: The symmetric case. In:
Whittle, J., Clark, T., Kühne, T. (eds.) MoDELS. Lecture Notes in Computer
Science, vol. 6981, pp. 304–318. Springer (2011)

8. Diskin, Z.: Model synchronization: Mappings, tiles, and categories. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE. Lecture Notes in Computer
Science, vol. 6491, pp. 92–165. Springer (2009)

9. Diskin, Z.: Lax lenses. Tech. Rep. GSDLab-TR 2013-03-01, University of Waterloo
(2013)

10. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli cate-
gories. In: de Lara, J., Zisman, A. (eds.) FASE. Lecture Notes in Computer Science,
vol. 7212, pp. 163–177. Springer (2012)

11. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling.
Electr. Notes Theor. Comput. Sci. 203(6), 19–41 (2008)

12. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations: the asymmetric case. Journal of Object Technology 10, 6: 1–25
(2011)

13. Ehrig, H., Ehrig, K., Prange, U., Taenzer, G.: Fundamentals of Algebraic Graph
Transformation (2006)

14. Favre, J.M., Lämmel, R., Varanovich, A.: Modeling the linguistic architecture of
software products. In: MoDELS. pp. 151–167 (2012)

15. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of ACM 39(1), 95–146 (1992)

16. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of ACM 39(1), 95–146 (1992)

17. Hebig, R., Seibel, A., Giese, H.: On the unification of megamodels. In: Proceedings
of the 4th International Workshop on Multi-Paradigm Modeling (MPM 2010).
Electronic Communications of the EASST, vol. 42 (2011)

18. Moggi, E.: Notions of computation and monads. Information and Computation
93(1), 55–92 (1991)

19. Mossakowski, T., Tarlecki, A.: Heterogeneous logical environments for distributed
specifications. In: Corradini, A., Montanari, U. (eds.) WADT. Lecture Notes in
Computer Science, vol. 5486, pp. 266–289. Springer (2008)

22

20. Muller, P.A., Fondement, F., Baudry, B., Combemale, B.: Modeling modeling mod-
eling. Software and System Modeling 11(3), 347–359 (2012)

21. NECSIS, https://www.necsis.ca/: Network for the Engineering of Complex
Software-Intensive Systems for Automotive Systems (2011)

22. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A diagrammatic formalisation of mof-
based modelling languages. In: Oriol, M., Meyer, B. (eds.) TOOLS (47). Lecture
Notes in Business Information Processing, vol. 33, pp. 37–56. Springer (2009)

23. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M., Chechik, M.: Consis-
tency checking of conceptual models via model merging. In: RE. pp. 221–230. IEEE
(2007)

