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ABSTRACT

Variability models are central artifacts in highly configurable
systems. They aim at planning, developing, and configuring
systems by describing configuration knowledge at different
levels of formality. The existence of large models using a
variety of modeling concepts in heterogeneous languages with
intricate semantics calls for a unified measuring approach. In
this position paper, we attempt to take a first step towards
such a measurement. We discuss perspectives of metrics,
define low-level measurement goals, and conceive and imple-
ment metrics based on variability modeling concepts found in
real-world languages and models. An evaluation of these met-
rics with real-world models and codebases provides insight
into the benefits of such metrics for the defined perspectives.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.8 [Software Engineering]: Metrics; D.2.13
[Software Engineering]: Reusable Software

General Terms

Measurement, Languages, Design

Keywords

software product lines, variability modeling, feature modeling,
metrics, empirical software engineering

1. INTRODUCTION

Variability models, such as feature or decision models, are
prominent means to cope with variability in highly config-
urable systems. When carefully managed, variability models
support the organization of design knowledge, facilitate inter-
active system configuration and variant derivation, and foster
an overview understanding of large codebases. Therefore,
variability models need to comply with certain properties.
They need to accurately describe the variability of a system,
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for instance, they must be consistent with the codebase to pre-
vent misconfigurations of systems. They should also adhere
to quality attributes—models should be easy to understand,
to configure, and to maintain.

Analyses ensure such properties, but are commonly specific
to variability modeling languages. In practice, we see a large
variety of free and commercial languages and tools [9, 7, 15].
Many share concepts with feature and decision models [12,
18], but often come with additional modeling concepts (e.g.,
derived features, visibility conditions, computed defaults),
domain-specific syntaxes, and intricate semantics [12, 20, 36,
10]. Making such models accessible to analyses, or conduct-
ing cross-language analyses, often requires detailed under-
standing of the underlying languages. A solution could be
to implement semantics-preserving transformations between
languages, or to a standard pivot language for variability
modeling. However, current empirical results question any
convergence of languages in the near future [9, 8, 23, 22];
and providing semantics-preserving transformations across
languages is difficult and often infeasible.

We take the position that a certain class of analyses suf-
fices to rely on metrics that expose core characteristics of
variability models. We conjecture that such analyses com-
prise the prediction of quality attributes of systems, such as
the maintainability and cognitive complexity of models (and,
thus, of the configuration process), or the prediction of char-
acteristics of the source code with respect to codebase sizes,
granularity of extensions, or scattering degrees of features.

Only a few works have discussed metrics over variability
models, perhaps due to the fact that realistic models are
rarely available to research. These existing metrics are lim-
ited to very basic feature modeling concepts [5], or specific
to class [19] and architecture modeling languages [38]. Ex-
cept [5], they have not been evaluated in a realistic scenario.
With the availability of large open source systems that have
variability models [12], or feature model repositories, such
as S.P.L.O.T. [30], a significant corpus of empirical data is
available to define and evaluate metrics. Specifically, we
believe that the definition of metrics should be driven by
modeling concepts from languages that appear in practice,
and by the use of these concepts in real models.

In this position paper, we report very early results on
exploratory research on variability model metrics, primarily
to raise discussion and to provide a framework for future re-
search. We discuss perspectives of variability model metrics,
we introduce a set of low-level, reliable metrics to charac-
terize models, implement them, and evaluate them using a
correlation analysis. We also provide preliminary results on



a correlation analysis with a set of source code metrics.
The initial set of metrics we propose has the goal to mea-
sure size and shape (e.g., number of leaf features), feature
representations (e.g., ratio of numerical features), constraints
(e.g., ratio of configuration constraints to visibility condi-
tions), and dependencies (e.g., connectivity ratio of the de-
pendency graph spanned by feature constraints). This set
likely needs to be complemented with further metrics tar-
geting different goals of measurement (e.g., computational
complexity by measuring expression operators), or concepts
of further variability modeling languages. Our preliminary
evaluation should also be extended with further subjects.

2. BACKGROUND

In this work, we focus on the two languages Kconfig and
CDL. We previously analyzed the languages and all their in-
stances available in open source systems software projects [12],
and build on these insights in the present work. To the best
of our knowledge, the systems using these languages con-
stitute the only freely available corpus of models and code,
which allows us to study models and code in their whole.

2.1 Variability Modeling Concepts

The languages Kconfig and CDL share core feature model-
ing concepts, such as Boolean features, a hierarchy, feature
groups (OR, XOR, MUTEX), and cross-tree constraints.
They also have advanced concepts rarely considered in aca-
demic modeling approaches, such as derived features, default
values (also computed), visibility conditions, and expressive
constraint languages. Kconfig also has three-valued logic to
control binding modes of features. We will briefly explain
the concepts when introducing the metrics in Sect. 4.

Other common variability modeling languages have similar
concepts, and often also go beyond FODA feature models [25].
Examples comprise extended (attributed) feature models [7],
the TVL [16] language, or the languages of the commercial
tools pure::variants and GEARS. All share concepts with
feature models, but provide additional modeling concepts,
such as non-Boolean value domains and expressive constraint
languages. Furthermore, decision-model-oriented approaches,
such as DOPLER [21], are known to be close to feature
models [18], have extended concepts such as visibility condi-
tions and default values, but have different semantics when
it comes to the model hierarchy.

We believe that the rich modeling concepts found in our
subject languages are “theoretically” representative (cf., the-
oretic sampling [24]) of a larger number of languages. How-
ever, showing applicability of our metrics to other languages
requires further analyses. Moreover, extending their applica-
bility to more heterogeneous languages, such as the textual
languages discussed by Eichelberger et al. [23], would be
interesting future work.

2.2 Software Metrics

The typical approach to developing metrics follows the
GQM strategy [6], which requires defining i) a concrete goal
of measurement, ii) inquiry questions, and iii) metrics that
collect supporting data for these questions. Our goal in this
paper is to measure structural properties comprising core
characteristics of models: size and shape, feature represen-
tations, constraints, and dependencies. We follow a more
lightweight approach by not formally defining inquiry ques-
tions, but conceiving metrics that measure characteristics of

the variability modeling concepts we find in the languages.
We believe this approach is justified, since aims of this phase
of our work are to provide cross-language model measure-
ments, and to explore the potential of using a set of simple
metrics in analyses—by investigating correlations and their
potential for predictions. This approach has been used by
others, such as Calero et al. [14] and Bagheri et al. [5]

Our proposed metrics target low-level structural charac-
teristics. Thus, they are reliable measurements, but not
necessarily able to measure more complex properties, such
as maintainability. The latter are usually compound met-
rics relying on several lower-level metrics. Development of
valid [26] measurements for such complex properties is a
natural next step, but out of scope of this position paper.

3. PERSPECTIVES

In the following, we describe perspectives for applying
variability model metrics. These range from very concrete
perspectives (P1-P3), to which we contribute in this paper, to
rather abstract long-term visions (P4, P5), requiring further
empirical studies and data.

P1l. Quantifying model properties. The most ap-
parent use case of model metrics is to share and compare
properties of models. In fact, we believe that it is difficult
for other researchers to exploit our extracted Kconfig and
CDL models, as our analysis infrastructure requires in-depth
knowledge of the abstract syntax of both languages. Making
these models available to research by reducing their content
to easily understandable metrics is an objective of our work.
Furthermore, a set of standardized metrics can be used to
make valuable characteristics of commercial models available,
without exposing the models themselves.

P2. Model Comprehension. Real-world models can
be large and can have complex—often textual-syntax [12].
Understanding them consumes much time in system mainte-
nance. Furthermore, understanding system design goals and
developers’ intents is important to improve the quality and
efficiency of maintenance. With a set of metrics reflecting
different aspects of variability modeling and design intents,
we can identify some metrics with statistical significance and
filter out irrelevant ones by various quantitative techniques,
such as correlation analysis and hypothesis testing. These
identified metrics infer specific characteristics of systems that
may be preferred or avoided deliberately by developers.

P3. Understanding the relationship between mod-
els and code. Our aim is to understand the relationship
between models and code, in order to support variability
model reverse engineering techniques. We have worked on
exact approaches to statically extract feature constraints
from source code [37]. In the present work, we explore a
broader range of different characteristics by correlation anal-
ysis, which potentially provides additional insights into real-
world systems. Insights of such a correlation analysis can be
useful to improve model reverse-engineering approaches [37,
4, 3], in particular to support disambiguating the feature
hierarchy—a common challenge for such techniques.

P4. Predicting system quality attributes. We hy-
pothesize that certain analyses of highly configurable systems
can be reduced to a quantitative analysis of a dedicated set of
variability model metrics. Such metrics can provide the basis
for experiments, to eventually predict quality attributes, such
as maintainability, usability, and evolvability of a system.
Appropriate metrics can potentially provide early indicators



of specific characteristics of systems, such as computational
complexity of a reasoner that provides choice propagation
and conflict resolution, and of the cognitive complexity of an
interactive configuration process for a user.

P5. Supporting code analyses. Beyond providing in-
sights into the relationship between models and code, metrics
might be able to support code analyses. This conjecture is
based on the observation that models and code co-evolve [29,
33]. Thus, several characteristics might correlate. For exam-
ple, constraint-related metrics might indicate complexity of
source code. Finally, we believe that analyses upon metrics
can be more efficiently calculated, and might provide early
indicators for results that otherwise require expensive source
code analyses. Whether model metrics could even be used to
predict bugs remains an interesting future research question.

4. METRICS

To address perspective P1, we propose metrics for our
four measurements goals: i) size and shape of the model, ii)
the representation of features, iii) the types and modality of
feature constraints, and iv) dependencies between features.
Names of metrics are aligned with existing work ([5], see
Sect. 7) if applicable. We implemented all metrics in a tool [2].

4.1 Structural Metrics

Structural metrics concern the size and the shape of vari-
ability models and should unleash core characteristics of
the feature hierarchy. The latter influences and restricts
possible visualizations, and the user-perceived complexity.
For example, moderate hierarchy depths of models are pre-
ferred in practice [8], and the number of leaf features impedes
understandability as indicated by a user study [5].

Primary size and shape measures comprise the number of
features NF, the number of top-level features N'Top, the
number of leaf features NLeaf (features without children),
and the number of grouping features NGF (features with at
least one child). The hierarchy can be characterized by the
leaf depth LD, where we consider the mean, the median, and
the maximum of the distribution of hierarchical depths of
leaf features. The branching factors BF (number of children
per feature) influence the width of the tree. We consider the
mean, the median, and the maximum of the distribution of
branching factors across all non-leaf features.

Feature groups are among the most common concepts in
feature models. We observe three kinds of feature groups in
our models, imposing OR, XOR, and MUTEX constraints
among the grouped features. Three simple metrics capture
their respective quantities: NNOr, NXor, and NMutex.
Although arbitrary cardinality constraints across features are
possible in CDL, they do not appear in any model, and we
refrain from defining a metric.

4.2 Feature Representation Metrics

Features that admit values beyond Boolean values are
commonly used in practice, and supported by major vari-
ability modeling tools and languages. In fact, even the
original FODA report [25] admitted non-Boolean attributes
associated with features. The use of non-Boolean features
indicates a technical system domain [12], and their use often
requires constraints beyond propositional logic, which chal-
lenges model reasoners. We propose the following metrics
to characterize the proportions of different types of features:
RSwitch determines the ratio of Boolean (switch) features,

RData the ratio of features with an arbitrary value domain,
with the sub-metrics RDataNum (numbers, including in-
teger, hex, and float types) and RDataString (arbitrary
strings). Calculating the latter two depends on explicit type
support in the variability modeling language, or on type
inference mechanisms in dynamically typed languages, such
as CDL. Furthermore, as restrictions of value domains (e.g.,
enumerations or ranges) can support reasoners, we introduce
RDataOpen, which quantifies the ratio of data features
with open value domains among all data features.

Features that have no value assigned or belong to the
commonality of the model (often referred to as mandatory or
abstract features), are captured by RNone, which measures
the ratio of such features.

Finally, we observe another kind of features that represent
abstract capabilities [12], for example, that the system has
a filesystem, or that networking support is provided. These
capability features are provided by other features, and are
the dependency target of features that require such func-
tionality. Thus, capability features reduce coupling within
the model and impact dependency structures. The metric
RCap measures their ratio in a model.

4.3 Feature Constraint Metrics

Constraints are the primary source of complexity in vari-
ability models. They challenge reasoners and users when
configuring a system. A significant amount of constraints
implicitly exists within the hierarchy (child-parent implica-
tions). In the following, we introduce metrics that address the
quantity, types, expressiveness, and modality of constraints
explicitly declared per feature.

We use our previous classification of feature constraints [12],
which covers constraint concepts found in feature models,
Kconfig, and CDL. These concepts comprise configuration
constraints, which restrict values and combinations of fea-
tures; visibility constraints, which blind or gray out feature
sub-trees in the configurator; defaults, which provide default
values for features, either as literals or as expressions; and de-
rived features, whose values are determined by an expression
or a literal, and are not directly modifiable by a user.

Our first metric RConstr determines the ratio of features
that explicitly declare any such constraint. With RPurely-
BoolConstr, we measure the proportion of purely Boolean
constraints among all declared constraints, which indicates
to what extent propositional-logic-based reasoners are appli-
cable on a model. RDerived is the ratio of derived features,
with the more specific metrics RDerivedExpr (values de-
rived with an expression) and RDerivedLit (values set by a
constant literal). RVisibility is the ratio of features with at
least one visibility condition. Note that visibility conditions
are always expressions. RDefault measures the ratio of
features with an explicitly modeled default value, with RDe-
faultExpr as the ratio of expressions, and RDefaultLit as
the ratio of literals used for such defaults.

Finally, we conjecture that the proportion between vis-
ibility conditions and configuration constraints influences
the configuration process. Configuration constraints can be
temporarily violated and, if supported by the configurator,
automatically resolved using a reasoner. In contrast, visibil-
ity conditions are applied immediately after each decision a
user makes, resulting in complete sub-trees becoming invisi-
ble or grayed out. It is still unknown when to use one kind
of constraint over the other. Thus, we define RConfVis



as the ratio between configuration constraints and visibil-
ity conditions. Its evaluation with respect to its impact on
the configuration process likely requires a controlled user
experiment, however.

4.4 Dependency Metrics

While the previous metrics indicate the extent to what
a model is constrained, core characteristics of the resulting
dependency graph further indicate the computational and
cognitive complexity of a model. Our abstraction here is a
dependency as the reference of another feature (that is not a
direct parent) in a constraint.

First, we adapt the CTCR (cross-tree constraint ratio)
metric from [31], which is the proportion of features that
participate in cross-tree constraints. It captures features that
either have at least one dependency, or are the target of the
dependency of another feature. Further consider the depen-
dency graph spanned by feature constraints (disregarding
hierarchy). We introduce RCon as the ratio of connectivity
of this graph—more precisely, the percentage of features
with a dependency. We also use RDen as the density of the
graph, defined as the average number of features referenced
in constraints per feature.

4.5 Prospective Metrics

We briefly discuss further candidate metrics that might be
relevant to predict quality attributes.

Hierarchy specifics. We have observed that both CDL
and Kconfig allow to separate the syntactic nesting of features
in the models from the hierarchy shown in the configura-
tors [12]. This deviance of both hierarchies might be relavant
to maintenance and understandability of models, thus, a
metric could measure it. Furthermore, Kconfig allows to vio-
late hierarchy rules of feature models—features do not have
to imply their parent and can even exclude it. This might
likewise impact quality attributes and should be measured.

Feature descriptions. Textual feature descriptions, con-
tained in all our subject models, are a rich source of informa-
tion. Applying text metrics, as we did before [37], shows that
these provide in fact useful information, for instance, about
ontological (hierarchical) relationships between features.

Feature-to-code mapping. The feature-to-code map-
ping, often implicitly hidden in imperative build logic [11,
32], can provide insights into the granularity and scattering
of variability in the codebase. Thus, metrics about this map-
ping, such as in the form of explicitly extracted file presence
conditions [11], could be a valuable addition.

S. CORRELATION ANALYSIS

To address P2 and P3, we conduct a correlation analysis
for our model metrics, and for a set of existing code metrics.

5.1 Experimental Setup

We choose subject systems that have both a variability
model and source code that we can analyze. As listed in
Table 1, we analyze eight highly configurable systems with
different sizes of the models (114 to 8355 features) and their
primarily C-based codebases (26K—10.2M LOC). All are
successful open source projects from the systems software
domain, having both a model and a significant codebase.
A superset of these was subject to our previous language
and model analysis [12]; however, as not all had a proper

Table 1: Subject systems

model version features LOC
ToyBox 0.1.0 191 26K
axTLS 1.4.9 114 21.4K
Fiasco 2013091917 213 140K
BusyBox 1.21.0 921 195K
eCos i1386PC 3.0 1256 301K
uClibc 0.9.31 367 320K
CoreBoot 4.0-nov2013.git 4118 1.56M
Linux x86 3.4 8355 10.2M

codebase, we left out those projects that use the variability
model to manage packages of third-party software.

The code metrics we explore are taken from Liebig et
al. [27], and summarized in Table2. They capture character-
istics of code with respect to preprocessor-driven variability
(conditional compilation). We use cppstats [1] to gather them.

We hypothesize that a significant correlation between two
model metrics (perspective P2) or a model and a code metric
(perspective P3) can be found (H:). Correspondingly, the
null hypothesis (Hp) is that there is no correlation between
such. We choose a correlation test based on insights from
Bagheri et al. [5] and Courtney et al. [17]. The former ob-
serve that their structural metrics did not have a normal
distribution. The latter report that the linear correlation co-
efficient (e.g., Pearson’s correlation coefficient) is unreliable
to disclose significant association if the sample size is rela-
tively low compared to the number of the evaluated variables.
Thus, we adopt a non-parametric measure, Spearman’s rank
correlation coefficient, to indicate the statistical correlation
between two metrics. As usual, the significance level is 0.05.

To help understand the correlation coefficient intuitively,
we use the following scale provided by Salkind [35]:

0.8 to 1.0 or -0.8 to -1.0: very strong relationship;
0.6 to 0.8 or -0.6 to -0.8: strong relationship;

0.4 to 0.6 or -0.4 to -0.6: moderate relationship;
0.2 to 0.4 or -0.2 to -0.4: weak relationship;

0.0 to 0.2 or 0.0 to -0.2: weak or no relationship.

Our analysis is quantitative and qualitative. We first fil-
ter out correlation coefficient estimates without statistical
significance (p-value>0.05). Given a small sample size, we
then qualitatively inspect strong correlations and try to find
explanations based on our knowledge of the languages, mod-
els, and configurator tools. In the following, we report such
meaningful correlations and provide careful interpretations.

5.2 Results and Discussion

We provide detailed results in Tables 3 and 4, and on the
website of our tool [2] (metric values, coefficients, p-values).

5.2.1 Model Metric Correlations

For P2, our analysis shows that correlations among model
metrics exist. Thus, not all of them are necessary to reveal the
characteristics of a model. Some can be used interchangeably.
Table 3 shows all coefficients (above diagonal) and p-values
(below diagonal) of strong correlations.

Model size and shape. We see a very strong relation-
ship between the number of features (NF) and the number
of top-level (NTop) and leaf features (NLeaf), which indi-
cates that functionality is added at both levels when models
grow. Together with the observation that the average leaf



depth (LD) is strongly negatively correlated with the average
branching factor, we see that developers avoid deep trees.

We see a strong relationship between the size metrics (NF,
NTop, NLeaf) and the maximum branching (BF). Not
surprisingly, the presence of abstract (mandatory) features
(RNone) strongly negatively correlates with the maximum
branching factor (BF), while the presence of XOR groups is
strongly correlated to branching.

Interestingly, the mean and medium measures of the BF
metric are not correlated with each other. This indicates
many outliers; thus, median is likely a more stable measure
for branching. Notably, we made the observation about the
high variance and many outliers in the branching factors
before [12]. Developing well-balanced trees is obviously not
a top priority for developers of our subject models.

Feature representation. We observe that higher num-
bers of numerical features correlate with constraints that use
expressions instead of literals. Numerical features (RData-
Num) strongly correlate with string features (RDataString)
and we do not see any tendency towards one or the other kind
in our subjects. Furthermore, data features (RData) are
rarely value-domain-restricted (RDataOpen) in our models.

We can also see that an increase of abstract (RNone)
features limits the maximum branching (BF') due to a strong
negative correlation. Higher proportions of these features
indicate more manual effort that went into structuring the
model (domain modeling), which naturally limits branching,
perhaps intentionally as modelers prefer well-balanced trees.

One limitation of our analysis is that we cannot reliably
identify capability features (RCap) in Kconfig models. How-
ever, we conjecture that their presence improves modularity
and reduces coupling—a property that likely is reflected in
the codebase. We leave this investigation as future work.

Feature constraints. We observe that the cross-tree con-
straint ratio (CTCR) is strongly correlated with the median
branching factor (BF), and strongly negatively correlated
with the maximum depth of the feature hierarchy (LD). In
fact, wider and less deep trees, have less opportunities to
encode dependencies in the hierarchy, thus, more cross-tree
constraints need to be declared.

The metrics CTCR, and the connectivity (RCon) and
density (RDen) of the dependency graph (excluding hier-
archy) all measure cross-tree constraints and turn out to
be very strongly correlated. Although this finding requires
further investigation to provide any deeper insight into de-
pendency structures, it might be an indicator of relatively
regular, not-skewed structures. However, we did not further
analyze the density of the graph, although we believe that
checking for specific distributions that are known from net-
work theory, such as the power law, could help to identify
“hubs”, which have many dependencies or that many features
depend on. The latter, in fact, could help to identify capa-
bilities. We leave construction of a corresponding compound
metric for future work, and hypothesize that it might be
useful to predict cohesion and coupling in a system.

We also find some natural correlations that show that the
higher proportions of abstract (RINone) features exist, the
less constraints are defined in the model. But interestingly,
RNone is strongly correlated with default values, indicating
that when more effort goes into structuring a model, the
more explicit default values (RDefault) are defined.

Finally, we propose further analysis of the effects of the ra-
tio between visibility conditions and configuration constraints

Table 2: Code metrics (from [27])
metric description

LOC lines of code

NOFC number of feature constants (features referenced in
source code)

LOFC  lines of feature code

ND average (AND) and maximal (NDMAX) nesting
of conditional compilation directives (#IF*)

SD scattering degree: average and standard deviation

of the number of occurrences of features in different

expressions of conditional compilation directives
TD tangling degree: average and standard deviation of
the number of features in expressions of conditional
compilation directives
number of #IFDEFS occurring at a certain kind
of language granularity: global level (GRANGL),
function or type level (GRANFL), block level
(GRANBL), statement level (GRANSL), expres-
sion level (GRANEL), method signature level
(GRANML)
number of extensions under equivalent #IF* expres-
sions: homogeneous extensions with duplicated code
(HOM), heterogeneous extensions with varying code
(HET), and mixed (HOHE).

GRAN

TYPE

(RConfVis) on the configuration process. Dependencies can
be realized using configuration constraints, which can be tem-
porarily disabled (and resolved using an inference engine),
or with visibility conditions, which are verified immediately
and cannot be disabled. We find these differences not only in
our subjects, but also in the commercial tool pure::variants.
It is still not clear what the right balance between the two
modalities of feature constraints should be.

5.2.2 Model and Code Metric Correlations

As a contribution to P38, we discuss model and code metric
correlations. Table4 shows coefficients (p-values in [2]).

We observe very strong correlations between model size
metrics (NF, NTop, and NLeaf) and code size metrics
(LOC, NOFC, and LOF), which also implies a potential
application of model metrics for code analysis and, thus, evi-
dences the conjectured perspective P5. Moreover, model size
metrics have very strong correlations with code granularity
metrics (GRANGL, GRANFL, GRANBL, GRANSL,
GRANEL, GRANML, and GRANERR), which indi-
cates that our subject systems in the domain of system
software are similar with respect to the granularity of their
variability. Since code size metrics are the most commonly
used metrics in code analysis, and code granularity metrics
have been used to analyze the architecture of variability-
aware systems [27], we can carefully expect a bright prospect
of model metrics used in these application areas.

Our correlation analysis helps us to filter out irrelevant
code metrics and to analyze the specific characteristics of
systems. For example, we observe that the model size metrics
have a very strong correlation with two of the code exten-
sion metrics (HOM and HOHE), but have no correlation
with the third one (HET). That inspired us that only the
two types of extensions are the most common and grow
proportionally to the system size.

Likewise, our correlation analysis identifies some important
model metrics that reflect the specific characteristics of sys-
tems. For example, we observe that the code size metrics are
strongly correlated with the number of XOR feature groups,
but not with the number of OR or MUTEX feature groups.
That means most of feature groups in our subject systems



are XOR groups and their size grows stably with the increase
of system size, which also confirms a previous finding [12].

However, we may still need more model metrics or code
metrics to extend the insight into systems. For example, in
our experiment, we do not see any correlation between the
maximum depth of a model and the maximum nesting of
#IF* directives. Moreover, we did not measure the code com-
plexity, for instance using McCabe’s cyclomatic complexity;
correspondingly, we may need to propose some compound
kind of model complexity metrics, which will be done in
future work.

6. THREATS TO VALIDITY

Internal validity. To enhance internal validity, we col-
lected all metrics automatically in terms of their prescribed
definitions. Moreover, we conducted the correlation analy-
sis following a standard calculation process of Spearman’s
rank correlation coefficient and chose only the statistically
significant (p-value<0.05) results for analysis. However, we
cannot guarantee that the analysis results of our experiment
depend on specific definitions of the evaluated metrics.

We are aware that our sample size (eight systems) is not
sufficient and may give rise to unreliable statistics [17]. We
mitigate this threat by choosing a non-parametric measure
(as suggested by [17]), and by a qualitative inspection of
strong (and significant) correlations based on our knowledge
of the languages.

External validity. To increase external validity, we chose
all real-world systems with models and analyzable codebases
we are currently aware of. These systems have different
sizes and use two different variability modeling languages.
Moreover, we propose a set of variability model metrics from
different perspectives, and collected all variability-related
code metrics from existing literature [27]. However, we are
aware that the results of our experiment are not automat-
ically transferable to all other systems, since our metrics
might not comprehensively take specific modeling concepts
of other languages into account. On the other hand, many
other languages share concepts with feature modeling and,
thus, with our subject languages. Our experience with other
tools, such as pure::variants, also shows that these have
similar advanced concepts (e.g., configuration and visibility
constraints) as our subjects—although a thorough analysis
would be required for sufficient confirmation.

7. RELATED WORK

Metrics for variability models have been defined before.
Bagheri et al. [5] propose ten structural metrics on FODA
feature models and evaluate their ability to predict the main-
tainability (classified into analyzability, changeability, and
understandability) of a model. They gather these quality
attributes in a user experiment with S.P.L.O.T. models [30],
and analyze correlations with the model metrics. The authors
also build prediction models for the quality attributes. A
difference to our work is that we investigate the relationship
between models and code, while Bagheri et al.’s focus is on
quality attributes as perceived by users. We also consider
real-world variability modeling concepts that are beyond fea-
ture models. In fact, frequent occurrence of those modeling
concepts indicates a need for metrics that cover them.

De Oliveira et al. [19] introduce metrics on UML class
diagrams that use specific stereotypes to describe product

line variability. They illustrate correlations of their metrics
to quality attributes (complexity, maintainability, and testa-
bility) on an example, and discuss use cases of these metrics
for product line architectural assessments. They emphasize
the benefit of metrics to support design decisions.

Zhang et al. [38] define metrics for the product-line-specific
architecture definition language vADL. The metrics measure
similarity, variability, reusability, and complexity of a product
line. The authors emphasize the capability of their metrics
to predict quality attributes of a whole system. In contrast
to our work, they define complex compound metrics, which
is out of scope of our position paper and future work. Unfor-
tunately, their metrics are not evaluated on real systems.

Code metrics related to variability have been defined in
various works. We used the code metrics defined by Liebig et
al. [27] from their empirical work about the low-level charac-
teristics of variability in 40 highly configurable systems that
use preprocessor #IF* directives. Lopez-Herrejon et al. [28]
adapt McCabe’s cyclomatic complexity metric to measure
the complexity of highly configurable systems. They evaluate
the metric on an academic system (KWIC) and conjecture
that defining metrics specific to highly configurable systems
can leverage existing work and results on software metrics.
Our present work is also motivated by this conjecture.

We previously studied the languages CDL and Kconfig,
and all models available in these languages in depth [12,
36, 10]. We also related characteristics of these languages
and models to the feature modeling language and the feature
models in the S.P.L.O.T. repository, showing that our models
significantly deviate from the academic models in S.P.L.O.T..
In the present work, we properly define perspectives, low-
level measurement goals and metrics, and implement them in
a tool. The correlation analysis, both among model metrics,
and between model and code metrics, is also new.

8. CONCLUSION

In this position paper, we have discussed the potentials of
variability model metrics to system analysis; introduced a set
of low-level variability model metrics; implemented them in
a tool; conducted a correlation analysis among these metrics;
and explored their relationship to code metrics in real-world
systems. The tool and detailed results are available online [2].

An immediate benefit of these metrics is that they al-
low to compare models across languages (P1). They also
make core properties of our models available to the research
community for further analysis, without requiring in-depth
understanding of the underlying complex languages.

Our preliminary correlation analysis so far shows that we
can identify significant and meaningful correlations between
model metrics (P2), gather interesting insights about model
design (P2), and identify correlations among model and code
metrics (P3). However, while size metrics are highly corre-
lated between models and code, shapes of the models (e.g.,
hierarchy depth and branching factors) appear independent
from the code, at least with respect to our limited set of code
metrics. We see the following next steps:

e Evaluation of applicability of metrics to further lan-
guages and further realistic models.

e Definition and evaluation of valid compound metrics
specific to a complex system property, such as cognitive
complexity of the model, or complexity of the codebase.

e Theoretical evaluation of the metrics regarding ac-



[10]

[11]

[16]

[17]

[18]

cepted properties (e.g., additivity, triangle inequality),
for instance, using the DISTANCE [34] framework or
Briand et al.’s [13] rules of software measurement.
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Table 4: Analysis results of model and code metric correlations. correlation coefficient estimates with p-values >0.05 is marked as —.

P-values are omitted for space reasons, but available under [2].
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