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Abstract. Large software product lines need to manage complex variabil-
ity. A common approach is variability modeling—creating and maintaining
models that abstract over the variabilities inherent in such systems. While
many variability modeling techniques and notations have been proposed,
little is known about industrial practices and how industry values or
criticizes this class of modeling. We attempt to address this gap with an
exploratory case study of three companies that apply variability modeling.
Among others, our study shows that variability models are valued for their
capability to organize knowledge and to achieve an overview understand-
ing of codebases. We observe centralized model governance, pragmatic
versioning, and surprisingly little constraint modeling, indicating that the
effort of declaring and maintaining constraints does not always pay off.

1 Introduction

Many modern systems contain an increasing amount of wvariability to tailor
systems for different customers and hardware. Variability can be realized using a
wide range of mechanisms including static and dynamic configuration parameters,
components, frameworks, and generators. Variability-rich systems range from
large industrial product lines [12,32,1] to prominent open-source software, such
as the Linux kernel [7] with over 11,000 configuration options—aka features [26].

Variability in these systems has to be managed. Variability modeling, the
discipline of describing variability in formal representations—uwariability models—
is one of the key techniques to deal with complex variability. Variability models,
such as feature [26,14] or decision [35,16,13] models, provide abstractions of the
variabilities present in software. They allow engineers to scope systems and to
plan their evolution; they can also be used for system configuration and derivation
using automated tools, such as configurators and generators.

However, variability modeling, as any modeling layer, comes at a cost. Models
have to be created and maintained, tools introduced, developers trained, and
possibly the organization restructured. These costs may outweigh any realized
benefit, such as a high degree of automation or decreased time-to-market—two
benefits often emphasized in the literature. But surprisingly, although hundreds
of publications target variability modeling techniques [10,22,9], little is known
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about actual practices in the industry. This scarcity of published empirical data
impedes research progress and the improvement of methods, languages, and tools.

We attempt to address this gap with an exploratory case study of variability
modeling in three companies. Our objective is to provide contextualized empirical
data on practices, and to elicit perceived strengths and weaknesses of variability
modeling. The analysis of each case is guided by three research questions:

— How are variability models created and evolved (RQ1)? We investigate mod-
eling practices, such as strategies to identify features and to modularize,
evolve and scale models. We also gather core characteristics of the models.

— What are the benefits (RQ2) and what are the challenges (RQ3) of variability
modeling? We identify technical, organizational, and commercial values and
challenges of modeling, as experienced and perceived by practitioners.

To put this empirical data into context, we also inquire organizational struc-
tures supporting the practices, and elicit scales, architectures, and technologies
of the respective software product lines.

This case study is part of our ongoing effort to improve the empirical under-
standing of variability modeling. We previously surveyed companies in their use
of variability modeling [5] and conducted semi-structured interviews with eight of
them. In the present work, we select three companies and describe and analyze
them in-depth. Our selection represents a broad range of development scales from
very small (two developers) to ultra-large (100 development teams); comprises
domains that commonly use variability modeling (automotive, industrial applica-
tions/energy, and eCommerce [5]); and covers all product-line adoption strategies
(proactive, extractive, and reactive [27]). In contrast to quantitative research,
our goal is not too reach any statistically significant deductions, but to describe
the practices that were successful in three heterogeneous cases. We provide rich
descriptions of three selected cases rather than analyzing all interviews, such as
using Grounded Theory [20], which is the subject for future work.

We proceed as follows. Sect. 2 introduces variability modeling and related work.
Sect. 3 describes our methodology. Sect. 4 presents results for all cases. Sect. 5
compares the cases, Sect. 6 discusses threats to validity, and Sect. 7 concludes.

2 Background and Related Work

We previously studied variability modeling in systems software [6]. That study
revealed the significance of feature and decision modeling concepts in languages
conceived by practitioners. It also showed that additional concepts (such as
defaults, visibility conditions, derived features) are needed to scale modeling. In-
terestingly, the models had very different characteristics (size, shape, constraints)
than models considered in research. In the present work, we strive to gain insight
into how the results from the previous study relate to industrial practices. Our
preceding survey [5] showed that feature models were among the most popular no-
tations, but also that a wide range of notations and tools is used. It also confirmed
the existence of large models—which have been reported before [39,38,29], but
without any further characteristics, such as the use or complexity of constraints.
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Fig. 1. Simple feature model (adapted from [18])

In the present study, all of our subjects use feature models. These are hierar-
chical structures of features, together with constraints that restrict valid feature
combinations. Fig. 1 shows the model of a Mobile Phone. It always (solid dot) has
the feature Resolution and optionally (hollow dot) has the features EarPhone or
Multimedia, or both. Multimedia is an OR group (select at least one) and Resolution
an XOR group (select exactly one). Further constraints reside in the hierarchy
(child-parent implication) and in additional cross-tree constraints (requires and
excludes). For instance, MP3 requires an Earphone. In practice, constraints may
be more complex. Some languages support rich constraints (e.g., arithmetic) over
features with non-Boolean values, such as numbers and strings [31,6].

Variability modeling is a core activity in software product line engineering
(SPLE) [12]. Although detailed industrial experience reports on SPLE exist, only
few focus variability modeling. The “Software Product Line Hall of Fame” [1],
a catalog of SPLE case studies[37], and a practice-oriented book [28] contain
information on adoption practices, organizational structures, and architectures,
but offer little insight into the use of variability models, their sizes and contents,
and the techniques used to build them. In fact, recent literature reviews on
the evaluation of variability modeling lament the lack of empirical work on this
topic[11,9,22,10]. Exceptions are industrial experience reports. Griinbacher et
al. [21] emphasize that techniques need to be customized to the organizational
context in which they are used; Reiser et al. [33] request compliance constraints for
the same purpose; Riebisch et al. [34] point out the use of feature models by non-
software developers; Gillan et al. [19] identify a lack of documented methodologies
to create feature models. These reports are complementary to our study, but
cannot provide a coherent picture. Finally, variability modeling can be seen
as an instance of model-driven development (MDD). Hutchinson et al. [24,25]
study MDD practices and experiences in industry. They reveal success factors for
applying MDD, such as incremental adoption, organizational commitment, and
integration with existing development processes. While these results are relevant
to variability modeling, we strive to gain insights specific to variability modeling.

3 Methodology

We conducted semi-structured interviews with knowledgeable representatives
from eight organizations identified in our previous survey [5]. In this paper, we
explore three of these cases in depth. Our selection criteria were that the cases (i)
represent a wide range of organizational sizes, (ii) stem from domains that most
frequently apply variability modeling according to the survey, and (iii) cover all
of the three common adoption strategies: proactive, extractive, and reactive [27].



Table 1. Variability model characteristics, variable artifacts, and variability mechanisms

consulting company

component producer

car manufacturer

notation feature model

tools CaptainFeature
modularization single model
model sizes 40

(features, approx.)

feature types 100% Boolean

feature kinds

model hierarchy depths
cross-tree constraints
custom relations
variable artifacts

mandatory, optional

5-6

none

none

code, help system
database schema

custom preprocessor and
code generator
hard-coded in generator

variability mechanisms

feature-to-artifact mapping

feature model
pure::variants
single model
1,100

95% Boolean,

5% integers and strings
mandatory, optional
34

very few

recommended

code (requirements and
test cases planned)

C preprocessor and
dynamic parameters

pure::variants’ family model,

semi-structured feature lists
TeamCenter (prev. Excel)
hierarchy of models

top level: 300-500,
intermediate level: up to 800,
low-level: up to 3000

100% Boolean

mandatory, optional

2-3

none

marketing relevance

code, logical design blocks,
components, Simulink models
C preprocessor and

dynamic parameters

informal textual descriptions

(imperative) feature Makefiles and architecture diagrams

Each of the interviews lasted one hour on average. We allowed the intervie-
wees to speak freely, but assured coverage of the following five topics: Context of
variability modeling, including organizational structure, variability mechanisms,
programming languages, and technologies; Practices (RQ1) used to create and
evolve models, including roles and responsibilities of the actors involved; Char-
acteristics of models, including size, shape, modeling elements, and richness of
counstraints; Benefits (RQ2) of variability modeling; and Challenges (RQ3) expe-
rienced. The interviews were recorded, transcribed, and analyzed by extracting
information relevant to the research questions.

4 Results

We report the results in a structured narrative form together with interpretations.
For each case, we provide the context; then in the first subsection the practices
(RQ1); in the second subsection the benefits (RQ2); and in the third subsection
the challenges (RQ3) of variability modeling. Interview quotes are prefixed with
A, B, and C for the respective subjects, and our questions with Q.

Table 1 summarizes the characteristics of the respective models, the types of
artifacts whose variability they describe, and variability mechanisms.

4.1 Consulting Company

Our first subject is a small (< 50 employees) consulting company delivering
customized web-based e-commerce and enterprise applications. The company
specializes in MDD of software solutions for customers. We interviewed a depart-
ment lead, acting both as a software architect and developer. Our case study
focuses on a Java web-shop system that was in production for 2-3 years. Its
purpose was to explore the potential of generator-based SPLE using variability
management and modeling solutions originating from research—including feature



models, a feature-model configurator, and a code generator framework. The latter
is the main variability mechanism: it conditionally compiles source files after
preprocessing them with a home-grown preprocessor. The development can be
characterized as follows:

— Research-driven: The company followed a textbook approach to variability
modeling. It adopted practices mainly originating from [14], using a feature
model and a code generator for product derivation.

— Small-scale: The development team comprised two developers, both working
on the code, the generator framework, and the feature model (40 features).

— Prototype-based: The company started with a prototype to experiment and
to gain experience with software product lines and feature modeling. The
prototype went into production and was sold to six customers.

— Fully platform-oriented: All artifacts are integrated into one platform. New
customer requirements are always realized within the platform.

— Re-active: The product line and the feature model are the result of decom-
posing an initial product into features.

Modeling Practices (RQ1). The company developed a feature model with
the goal of configuring and deriving products automatically. It used the relatively
simple tool CaptainFeature [3], which had usability issues, but no better tool
existed in 2002. The interviewee emphasized the preference for having a tool
that supported the exact graphical notation of feature models (Fig.1). This
representation of variability could be handled sufficiently well for a small model
of 40 features, using the tool’s zoom capabilities. To create models, the develop-
ers performed a domain analysis of the web-shop domain, including customer
requirements. The developers modeled both variability (optional features) and
commonality (mandatory features) of the product line. In this manner, following
advice and processes from SPLE literature, the developers scoped the product
line. New features were introduced either when requested by customers or when
the team saw added value for future customers:

A: The question in our case was rather: What can we sell to the customer? What
would be the added value a customer might want to have [...]? We always looked
at it from the perspective of what we can sell.

A core part of a model is the feature hierarchy, which was developed top-down,

based on domain-specific ontological relationships (part-of):
A: We tried to come up with logical relationships between the features [...] we
had a feature that was called "Catalog System". That was the basis, since a shop
always has a catalog. If you cannot display articles, then you just don’t have a
shop. Underneath, we put features such as "Shopping Cart’, since only when you
have a catalog, it makes sense to take the shopping cart as a feature.

However, decomposing the initial product might have influenced the creation
of the feature model, and optional features mapped to artifacts might stem from
a bottom-up approach. Thus, the commonality (domain modeling) was likely
created top-down, while the actual variability was created bottom-up.

The resulting feature model had around 40 Boolean features and was relatively
balanced. Our interviewee estimated around 2—6 children per non-leaf feature on



average, and a maximum depth of 5 or 6 levels. The model was under-constrained.
Although constraints among features existed, only hierarchy constraints and
feature groups (OR and XOR, Fig. 1) were modeled and could be used to support
the configuration process.

The model evolved rarely and only 2-3 features were added per new customer.
The overall structure of the feature model was also rarely changed and feature
were never removed. Feature additions almost never affected existing functionality.

Benefits (RQ2). Our interviewee sees the main benefit of variability modeling in
organizing the information needed to maintain an overview understanding of the
system. He emphasizes that the tool and the model provide management facilities
that are useful to summarize product capabilities, to understand relationships
between features, and to see the assignment of features to customers.

The company also sees benefit in a feature-model configurator. However,
shortcomings in it can negatively impact the configuration process. Yet, the
company experienced no significant impact given the limited scale of the system:
A: The tool wasn’t really that optimal [...] we had no real support where we could
see that feature X conflicts with feature Y [...] We might have sometimes reached
a point where we didn’t know what happens why, or when the nesting was too
deep. But that wasn’t anything dramatic.

In the literature, a common argument for SPLE is the reduced time-to-market.

When asked about this benefit, our interviewee responded:
A: I'd answer with a clear “depends on.” It reduces time-to-market when I can
rely on a basis and only have to make small changes for a client. On the other
hand, I cannot do it rashly or without care, because otherwise I break something
in my product family, which is not planned either. Where it also helps is when the
customer wants exactly what we already implemented, then the time-to-market
really converges to zero.

In summary, the company considered its prototype successful and reused most
of its infrastructure in a subsequent system: a jewelry-ring configurator developed
for a ring manufacturer. The company developed a DSL used to describe properties
of rings, in order to generate 3D models of them. This DSL used feature-model
concepts, but introduced domain-specific terminology and language elements to
facilitate a fine-grained configuration of the rings. Interestingly, it also introduced
feature cardinalities [15], which allow multiple instantiations (cloning) of features,
since a prototyped feature model became too wide and shallow.

Challenges (RQ3). Despite rare evolution, the co-evolution of the variability
model and the product-line infrastructure is considered as a major challenge:
A: I think the biggest problem we faced at that time and also today, and which is
not really solved yet, is the evolution: To exactly know how to evolve features, on
which implementation components they depend, so that you don’t break anything
when you work in the generator. I mean, to keep the complete overview: what is
there and how does it all play together?

Interestingly, even though one of the main purposes of feature models is to
allow non-experts (customers) to configure a product, this turned out to be
difficult, as the customers did not have the right prerequisites:



A: Currently, we use it just internally. When we started in 2003, the underlying
idea was also to build a frontend from the feature model where the customer can
freely configure—ezactly like the paradigm. But we abandoned this idea relatively
quickly, because it is still very difficult for the customer [...] In the end, you need a
consultant who tells the customer what he needs, because that is the first problem.
And then [you need] to understand what that means in our configuration.

Another challenge lies in the organization of teams. Since the company is
small, the same developers were building the platform infrastructure and target
products simultaneously. Developers would get confused working in both worlds:
A: We tried to develop the generator and target code in parallel. That was rather
driven by the theory. But we noticed that it doesn’t really make sense, I mean it
slows us down [...] When you work in both worlds and you come to a spot in the
target code where variability is addressed, you always automatically ask yourself
whether it’s something that you resolve in the target code or in the generator. And
then you start pondering what makes most sense, and you loose time, although
it’s not your task to think about that as a target code developer.

4.2 Component Producer

Our next subject is a large (<25,000 employees) vendor of electronic and mechan-
ical components for end-user and industrial applications. The company has a
large portfolio of products, many of which are derived from ad-hoc product lines,
often using a clone-and-own approach. We interviewed two software architects
responsible for variability management in a division that develops a product
line of software controllers for power electronics. The product line has twelve
products, which are fully integrated into the platform, and over 30 optional
add-ons for sub-products maintained outside the platform. The product line
has been in production since 2005. In 2009, variability modeling was introduced
using the tool pure::variants [8], which also provides variability mechanisms: a
“family model” representing the source files, and a build system. The C/C++
preprocessor handles fine-grained variations. The binding of variability is mainly
static, but the shipped products include a large number of runtime parameters,
which can be configured by customers in a semi-static manner (they are normally
not changed during normal operation of a component, only in the configuration
phase). The codebase has 1.5M lines of C++ (98%) and C code, distributed
over 10,000 files with around 14,000 conditional compilation directives. The
development can be characterized as follows:

— Research-driven: SPLE and variability modeling practices were adopted in
interaction with consultants and researchers.

— Medium-scale: The feature model has slightly more than 1100 features. The
product-line-development involves around 60 software engineers.

— Mostly platform-oriented: Core parts of the product line are integrated into
one platform. Customer-specific artifacts (sub-products) exist outside.

— Euxtractive: The product line and the feature model are results of a migration
of existing individual products originating from a clone-and-own approach.



Modeling Practices (RQ1). Variability is modeled using a single centralized
feature model. Features are mapped to code using a family model. Building,
maintaining, and evolving the feature model is under the control of one expert:
B: We have a colleague who |[...] really has the domain knowledge, because he took
care of all the development [...]. He consults with the other development teams.
[...] So we try to have one place, or one person that is responsible. But then it’s
not the case that he decides all the things. So, whenever we have an issue, we try
to organize a workshop or a meeting [...], it’s actually his responsibility to make
[sure] [...] that it’s correct.

The modelers focus on building the hierarchy (child-parent) relationship
between features and try to avoid cross-tree constraints; few exist in the model.
However, they begun adding custom relationships, such as “recommended”. The
latter often indicates bug fixes, which are actually modeled as features, since
not every customer has an interest in enabling them. Some exploit the “invalid”
behaviors in their applications and prefer to keep them without fixing.

The variability models are under-constrained. Dependencies among source
files are not modeled in the family model, which could be used by pure::variants
to verify configurations. Instead, the company finds it easier to maintain tested
configurations of its twelve main products instead of exhaustively modeling all
constraints. The few dependencies used are primarily binary “requires” and
“excludes” relations. There are no numeric or string constraints in the feature
model. Instead, complex constraints are put into the feature-to-code mapping
as presence conditions of source files. This strategy is interesting, as it reduces
constraints both in the variability model and the family model, which contains
no dependencies at all. The team strives to keep all models simple.

The hierarchy of the feature model is reasonably well balanced. The engineers
avoid deep trees and consider a maximum depth of three or four levels reasonable.
Yet, problems with finding the optimal grouping of features occur in some cases:
B: Then actually it becomes too flat somehow. So, it’s a question of how to group
them. We’re still working on the optimal way. But I think four, that’s really the
mazimum. We don’t have really like huge trees over there.

The resulting model has around 1100 features. Evolution of it is mostly limited
to adding features. Feature removal occurs within rare, but important, clean-up
tasks. The hierarchy is also relatively stable without any major refactoring. The
overall growth rate of the model is estimated at around 5-10% per year, with
up to 50 new features per release, 3—4 times a year. Versioning is considered
orthogonal to modeling, so models are versioned but not features (i.e., no multiple
temporal versions of features in the model).

Benefits (RQ2). Our interviewees emphasize the organization of knowledge
and the visualization of variability as the main benefits. Naming and organizing
features makes them visible and accessible to developers, encouraging reuse:

B: The first one is that it’s visible, you see the features that you had in the code,
before, and actually you see the features of the whole product line. Before, they
saw features of the specific products. And then there was a process to make sure
that the new features were propagated to the rest of the product.



Q: So you know what’s common?
B: This, and actually now you can see them. I think the best is you can see
relationships, to actually know what configurations are allowed and what are not
allowed. That was also not so easy to express in the past [...] This is from the
developer’s point of view. But it’s also, we can see that from the, say project
development, it’s also important, because before we noticed that the same func-
tionality was implemented twice within the same project, basically they haven’t
realized that. They implemented the same features.
Q: Because it was not visible?
B: Yes, exactly. So it’s not only from the development point of view; now you can
somehow understand the code easily; you can see the dependencies between the
features; you know actually how this code works. And there’s also documentation
that is attached to the modeling. So you can generate documentation automatically.
Although our interviewees could not estimate increased productivity quanti-
tatively, they claimed substantial quality improvements by employing SPLE and
feature modeling, that it reduced the number of critical bugs significantly. They
also claimed that time-to-market was significantly reduced due to automated
product derivation. Interestingly, the organization presently strives for further
automation by linking features to portfolio and requirements models.

Challenges (RQ3). The interviewees expressed three challenges related, re-
spectively, to organization, modeling, and development. First, it is difficult to
convince all stakeholders to invest in core assets when the organization has a
matrix structure. Such an organization has two opposing forces: those who opti-
mize for short-term revenue by resorting to clone-and-own approaches with less
(short-term) development effort, and those who insist on proper SPLE activities
to assure revenue and less maintenance effort in the long run, but with higher
(short-term) effort:

B: In a big, big, really big company that has this [inertia], it’s easier to enforce
things also, because the management can actually push the things. [Our company]
is in the middle, it’s not very big, it’s not a small one. So there’s some kind of
let’s say, maybe not fight, but some kind of

Q: pushback?

B: Yes, between the development and the management. And that’s actually a
challenge, because introduction of a product line requires that there’s some kind
of organizational structure introduced [...] So people will have to start thinking in
terms of developing assets that can be reused and this can be achieved only if you
have a group that takes care of [...] domain engineering. And I’d say in the really
big companies, maybe they have somehow the will to invest in actually organizing
the whole undertaking. Whereas in the companies that are in the middle, it’s
some kind of a strained situation when we have product development that is
really looking at the business and economy point of view, and then we have the
technology people, or the part that are developing the product, that are pushing
really for doing things the right way. And then the management is somehow in
between. [...] Because we have to earn money, so business tells them we have to
earn money. But we cannot do it the way we do it.



The second challenge concerns modularization of the model. It was difficult
to find a good structure when trying to separate product-specific features. Both
common and product-specific features exist, as well as commonalities between
these two groups. It is also possible to have many different combinations between
the groups. Thus, the result would have been an intricate model.

The third expressed challenge concerns the high amount of conditional com-

pilation directives in the code and the additional variability model layer that
developers need to take into account:
B: I think the biggest problem is that the developers are used to working for a
long time on the same abstraction level, basically text. Now somehow we introduce
a concept, a new way of working, because they cannot just, for example, merge
everything at the source code level. They also have to think about models [...]
So whenever they add a feature, they have to add the feature to the model. So
later whenever they merge back the integration branches, they have to merge all
the artifacts. They just have to learn about the modeling part. But I think the
modeling in pure::variants, I think the way they realize that is a big advantage.
Because in the past, they did it all in source code. So you had a huge header file
with features enabled and disabled. The dependency was hardly expressed.

4.3 Car Manufacturer

The third subject is a very large (< 150,000 employees) car manufacturer
producing over 400,000 cars per year. From three main platforms, an estimated
number of three million different car models can be derived. Our interviewee
is a software architect who was involved in modeling and managing variability.
The product-line engineering comprises two major activities: development of car
components and manufacturing of cars. Our focus is on the development, which
uses features to capture variability. Features are mapped to hardware and software
article numbers to facilitate the manufacturing. The software is mainly written
in C, with a few exceptions, such as the infotainment system relying on C++
and Java. Variability mechanisms comprise component composition, conditional
compilation with the C preprocessor, and dynamic adaptation at car startup using
configuration options. The latter allow finer-grained variations, while features
are generally coarser-grained. The development can be characterized as follows:

— Practice-driven: Software variability-management strategies are an adaptation
of the mechanical manufacturing processes, which have evolved over decades.

— Large-scale: There are three main vehicle software platforms. 50-100 teams
constantly interact with one another on individual subsystems of the platform.

— Multi-level modeling: Three levels of feature models are maintained in the
company, each level facing different dynamics and governance.

— Heterogeneous modeling: The company uses diverse modeling approaches,
including behavior modeling (Simulink) and structural modeling using a
specific subset of UML (Sparx Systems Enterprise Architect).

— Pro-active: Product-line engineering was adopted from the beginning. Single-
system development was infeasible due to the huge diversity. The current
platforms are the result of a slow evolution over 15 years.



Modeling Practices (RQ1). Feature models are used on different organiza-
tional levels to describe the variability of the in-car software. All models are stored
in a database, the TeamCenter product lifecycle management tool [2]. Before that,
Excel was used. Each of the three platforms has a top-level model describing
the “complete vehicle level” with around 300-500 features. Most of these are
customer-visible features with a few exceptions, such as “remote diagnostics”.
The top-level model is built and maintained by a central group in the company.
Features are refined into lower-level models to a maximum of three levels. For
instance, the infotainment system has an “intermediate” level with 700-800
features and a low-level model with up to 3000 features. For other subsystems,
fewer levels suffice, such as the chassis system with two levels.

Often, just a superset of the actual variability is modeled: finer-grained vari-
ability is realized by configuration options or via dynamic adaptation. Thus, the
feature modeling concepts used are very simple, without any strong formalization.
Structural grouping of features according to functionalities exists, such as for
chassis, powertrain, or comfort features in the top-level model. Features are
tagged as optional or mandatory, together with information about their relevance
for marketing purposes. Only Boolean features exist; more types, such as enu-
merations (up to ten values) and integers, occur in the dynamic configuration
options managed separately from features. Neither feature groups (OR/XOR,
Fig. 1) nor cross-tree constraints are modeled. Although many exist, they are only
documented informally or contained in the manufacturing database. Likewise,
the mapping between features and software components or other models is only
informally documented. Checking constraints does not play a role in development:

C: We do that check in the manufacturing though, because we have a lot of
constraints. I mean, two physical things can’t occupy the same place physically.
So, for example, if you have an engine of this size, there are things that you
cannot have because it’s so big. And that type of constraints we have, or checks,
we have in the manufacturing. And we also do that, the same thing to software,
for example, this software article is not compatible with that one. But, we don’t
do that a lot in development, but in manufacturing.

The different model levels face different governance and evolution. The top-
level is very stable, with updates only occurring at specific “update” events twice
a year. There, features are primarily added. Old features are removed, but usually
directly replaced with new ones. The low-level models are highly volatile. For
instance, the infotainment subsystem changes almost weekly.

Given all of these large-scale practices, the company never aimed for a
configurator-based approach to facilitate more automated derivation processes.
The latter is partly handled by a home-grown manufacturing tool, which combines
hardware and software article numbers during manufacturing, while adhering to
dependencies. Thus, the prime reason for variability modeling is the management
of variability, which does not require more formal modeling techniques.

Benefits (RQ2). Our interviewee sees the largest benefit of variability modeling
at the requirements level: in scoping products, understanding configuration spaces,



maintaining development overviews, and fostering communication across teams.
Further benefit lies in marketing and coordination of new model releases:

C: I would say the most important purpose is to agree between the R€D orga-
nization and with the product planning organization over the content of each
product. And based on that, you, what I'd say, you break down, or derive the
requirements on each subsystem to realize these features. In most cases, these
features are realized by several subsystems co-operating.

Our interviewee expressed a neutral opinion about the value of variability
modeling in our previous survey. According to him, feature modeling in its
simplest form, as practiced in the company, provides the mentioned benefits, but
provides little assistance with product configuration and derivation activities.

Challenges (RQ3). Our interviewee sees the biggest challenge in organizational
and cultural issues among heterogeneous teams. While he expressed some issues
with code, his focus as a software architect was primarily on the organizational
level, where he is concerned about interaction and efficient use of modeling:

C: We have a lot of dependencies between subsystems and between teams, so it’s
quite difficult for the teams to work autonomously [...] I think there is an inherent
complexity, because the number of interfaces is also great [...] If we look at the
present processes at [...] when it comes to modeling, it seems like we’re aiming to
[...] keeping practices, which means that we’re trying to align the modeling efforts
between different domains, we try to align the design artifacts that we are using,
and so on. And [we focus] on keeping the traceability between the different kinds
of artifacts that we use—the feature models, the software in itself, the different
[-..] component models, AUTOSAR component models, our design model, our
architecture model, and so on. So we put a lot of effort in maintaining all these
design artifacts in a consistent way [...] My personal opinion is that I don’t
think that’s the right way to go, because since the complexity of our systems is
exponentially increasing [...] we actually need to identify ways of working such
that different development teams can work more autonomously, that they can use
the tools they need for their specific problems [...]

In summary, our interviewee is concerned with handling the many dependen-
cies between subsystems and establishing a harmonized collaboration between
teams. While he observes that processes are heading towards textbook practices
that strive to unify the current diversity in modeling approaches and introduce
coherent traceability, he would prioritize autonomous teams over a unified ar-
chitecture, which is increasingly complex due to a high amount of dependencies.
The whole development might become even harder to manage with increasing
effort spent on maintaining traceability and explicitly modeled dependencies.

5 Cross-Case Analysis

We now conduct a cross-case analysis and discuss commonalities and differences
across cases. After summarizing the context in which variability modeling is
performed, we compare practices (RQ1), benefits (RQ2), and challenges (RQ3).



Our cases applied variability modeling in very different contexts. The consult-
ing company used feature modeling and SPLE as known from the literature, using
the original graphical notation, a configurator, and a generator that resolves
variability in an automated process. Although these web shops generated rev-
enue, the project was a means to experiment and to gain expertise in variability
modeling. For the component producer, feature modeling and SPLE was a core
strategy to conquer complexity and maintenance issues stemming from a previous
clone-and-own approach. Their practices originated from a close collaboration
with researchers and the vendor of their modeling tool. The company was open
to adopt solutions from research and saw the value of the solutions in lower
time-to-market and increased code quality, but faced friction between demands
for short-term revenue and the necessity of systematic variability management for
long-term advantages. The car manufacturer applied feature modeling at a much
larger scale and with simpler modeling concepts than both previous subjects.
Practices originated from an engineering culture that had evolved over decades.
While the other subjects strive for higher automation, unification, and integration
of modeling, the reported experience suggests that textbook approaches might
not work, or their effort might outweigh any potential benefit to this organization.

Practices (RQ1). Limited constraint modeling: Our most surprising finding is
that all subjects avoid modeling constraints. This observation is in contrast to
our previous observations in systems software, where detailed constraints are
formally defined in rich languages. However, while configuration in our subject
companies is performed by only a few knowledgeable domain experts, the systems
software projects are configured by a large number of third-party users in ways
that are not closely controlled by the platform developers. The latter setting
requires constraint modeling, choice propagation, and conflict resolution facilities
in order to guide users to correct configurations and prevent incorrect ones. These
facilities do not seem to be essential in the context of our subjects.

Centralized model governance: Variability models need to be controlled cen-
trally. While in the consulting company, the total development team was too
small to draw any conclusion, the other subjects apply strict governance of either
the whole model (component producer) or the top-level model (car manufacturer).
Either one expert or a central team control the evolution and maintenance of the
model. Interestingly, this observation confirms Hypothesis 1 in our study [4] on
variability mechanisms in software ecosystems.

Furthermore, larger organizations, such as the car manufacturer, even require
clear responsibilities per feature: it has to be defined, specified (e.g., by writing
use cases) and developed by a dedicated entity in the organization.

Pragmatic versioning: We have not found any sophisticated support for ver-
sioning. One could, for example, imagine specific modeling elements for deprecated
or experimental features, version annotations, or constraints over versions of
features. Instead, the component producer uses an ordinary version control system
for the whole model, and the car company applies a pragmatic solution: features
have a unique identifier capturing lifecycle information. This approach, however,
would lead to highly redundant constraints when modeled among features.



Domain knowledge in feature hierarchies: Our first subject built the feature
hierarchy using domain knowledge. This indicates that hierarchical relations
between features in fact represent domain-specific, ontological relationships. This
observation supports insights from our previous work on reverse-engineering fea-
ture models [36,30]. Thus, feature models contain unique ontological information,
and building a feature hierarchy can hardly be automated and will have to be
done by domain experts in a largely manual effort.

Top-down and bottom-up creation of models: All our subjects obviously needed
some amount of top-down knowledge and analysis. The first two subjects also
used the code of existing products to identify features. Thus, we believe that the
creation of models that are used to configure products will be often created by a
mixture of top-down and bottom-up approaches.

Benefits (RQ2). Organization of knowledge: The most important benefit of vari-
ability modeling, emphasized by all interviewees, is the organization of knowledge.
This benefit resembles perceived benefits of MDD [24]—companies appreciate the
potential of MDD to ease communication and to overview the development.

Visualization and scoping. All interviewees appreciate the visualization and
product-scoping capabilities of feature models. Most of them were able to better
understand product functionalities. The consulting company found it beneficial
to see which customers have which features. The component producer was even
able to identify duplicate implementations of certain features.

Configurator support: The insignificance of configuration in the three industrial
cases is surprising, which is in contrast to our previous study of systems software
(Sect. 2). We conjecture cost /benefit considerations. Configurators require formally
declared constraints and, according to our previous experience, also proper usage
of different constraint types (e.g., configuration constraints, visibility constraints,
default constraints) to leverage a configurator. Such effort would not pay off for
our subjects, and even with intelligent configurators, users can spend substantial
time configuring products when intricate constraints exist [23].

Challenges (RQ3). Mindset changes: Introducing variability modeling requires
mindset changes of all actors. As can be seen from the component producer,
developers commonly think at one abstraction level and struggle with trying
to maintain features (at another abstraction level). Even in the consulting
company, where the developers had bought into modeling, both struggled with
developing application code and infrastructure code in parallel. The situation
for the car manufacturer was different, however. SPLE was an adaptation of
mechanical-engineering practices that have a long tradition; thus, developers
always understood that single-systems or cloning-based development is infeasible.

Short-term versus long-term benefit: SPLE requires discipline from all actors—
specifically, to consistently co-evolve models and code. In a matrix organization,
there is a higher risk of conflict between proponents and opponents of systematic
variability management. Actors who strive for short-term revenue might fall back
to clone-and-own for product derivation, leading to high maintenance in the
future, as the clone requires maintenance. Establishing a culture for systematic
management and modeling is a core challenge.



Evolution: All subjects primarily add features and seldom remove features or
restructure the hierarchy. The consulting company mentioned that evolution was
challenging as it requires understanding the feature-to-code mapping and the
impact of feature changes, to avoid breaking the system. The car manufacturer
expressed concerns about exploding complexity of their development, but not
specifically about the (simple) models. Although the company strives for increased
commonality of the software for all car models, whether this effort will affect
features or only the finer-grained configuration options remains an open question.

6 Threats to Validity

External validity. Our findings originate from only three cases. However, we do
not attempt to reach any statistical generalizations from the data, but describe
substantial cases in their full richness. In fact, case-study research does not aim
at representativeness, which is impossible to assess since the whole population
of cases is usually unknown. Our selection of cases is based on theoretical
sampling [17]. We chose them according to three criteria (Sect.3) among all of
our subjects. A limitation of our study is that all subjects successfully applied
variability modeling. Studying failed attempts would be valuable future work.
Internal validity. Our findings rely on interview data, since no other datasources
(e.g., artifacts) were available. We interviewed actors centrally involved with
variability modeling. Still, triangulating our results with data gathered using
other methods, such as action research or ethnographic field studies, would be
valuable future work. Interestingly, the practices of the car manufacturer correlate
with our experiences with another car manufacturer of similar size, improving our
confidence in the results. Last, the interview data could be biased due to leading
or misphrased questions. We did pre-tests and carefully analyzed the transcripts,
omitting responses that indicated uncertainty. The consulting company interview
was done in German. We carefully, almost literally, translated it.

7 Conclusion

We have provided empirical data on variability modeling in successful industrial
applications. The reported experiences show that feature models are perceived as
intuitive and simple notations that organize unique domain knowledge and foster
understanding and collaboration among developers. Many practices are pragmatic,
such as versioning, the mix of top-down and bottom-up modeling, central model
governance, or the very limited constraint modeling. Interestingly, instead of
declaring and maintaining constraints, our subjects prefer to manage a set of
configurations or to let experts configure products. Thus, the primary benefit of
variability modeling lies in variability management—organizing, visualizing, and
scoping features—less in configuration and automation for our subjects. Yet, the
benefits require acceptance of an additional abstraction level and discipline in
maintaining models. Otherwise, long-term advantages can be compromised for
quick revenue, which we found is especially a problem in matrix organizations.
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