
Flexible Product Line Engineering with a Virtual Platform

Michał Antkiewicz, Wenbin Ji,
Thorsten Berger, Krzysztof Czarnecki

University of Waterloo, Canada

Thomas Schmorleiz, Ralf Lämmel
Universität Koblenz-Landau, Germany

S, tefan Stănciulescu, Andrzej Wąsowski
IT University of Copenhagen∗, Denmark

Ina Schaefer
Technische Universität Braunschweig, Germany

ABSTRACT
Cloning is widely used for creating new product variants.
While it has low adoption costs, it often leads to maintenance
problems. Long term reliance on cloning is discouraged in
favor of systematic reuse offered by product line engineering
(PLE) with a central platform integrating all reusable assets.
Unfortunately, adopting an integrated platform requires a
risky and costly migration. However, industrial experience
shows that some benefits of an integrated platform can be
achieved by properly managing a set of cloned variants.

In this paper, we propose an incremental and minimally in-
vasive PLE adoption strategy called virtual platform. Virtual
platform covers a spectrum of strategies between ad-hoc clone
and own and PLE with a fully-integrated platform divided
into six governance levels. Transitioning to a governance
level requires some effort and it provides some incremental
benefits. We discuss tradeoffs among the levels and illustrate
the strategy on an example implementation.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Design, Management

Keywords
product line engineering, clone management, virtual platform

1. INTRODUCTION
Development of multiple variants of products is often needed
in order to satisfy conflicting requirements, legal frameworks,
or to adapt the products to different geographical regions
and usage conditions. In many cases, such product families
are created using clone-and-own—a new variant is created
by copying and customizing assets from an existing variant.

∗
Supported by ARTEMIS JU grant n◦ 295397 VARIES

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

Despite having low adoption costs and allowing indepen-
dence from other developers, cloning easily leads to inconsis-
tencies, redundancies, and lack of control. In the literature,
using cloning in the longer term has been considered a harm-
ful practice [8]. It has been traditionally recommended that
organizations adopt a more systematic, strategic reuse offered
by product line engineering (PLE) [10] based on a central
platform. Such a platform should integrate the reusable
assets and it should be used for deriving new variants of
products. Existing incremental PLE adoption strategies [4,
6] discourage relying on cloning due to maintainability issues.
However, as shown by industrial practice, eliminating cloning
and adopting the integrated platform is not always desirable
nor beneficial as it requires high-risk migration processes [2].

In this paper, we present an incremental and minimally
invasive strategy for adoption of product-line engineering
called virtual platform. Virtual platform allows organizations
to achieve many benefits traditionally associated with having
a fully-integrated platform but without requiring the high-
risk transition processes, while retaining the flexibility and
benefits of cloning. Most importantly, it allows organizations
to obtain incremental benefits proportional to incremental
efforts suitable to the frequency of reuse and the required
degree of consistency among the variants.

2. VIRTUAL PLATFORM
To describe the spectrum of strategies employed within the

virtual platform, we use the following conceptual framework.
An organization runs many projects concurrently. Each
project has a team and assets. The team uses the assets
to derive one or more variants of products. An integrated
platform is a special kind of project intended to keep reusable
assets that can be used without modification by teams in
other projects. The variants can be further characterized
by features. The customer requests a variant based on the
desirable features. The features can be mapped to fragments
of assets used to specify and implement them.

The main idea of the virtual platform strategy is to apply
a clone management approach to make distributed assets
reusable instead of physically containing all reusable assets
in an integrated platform as typical for PLE. Transitioning
from clone-and-own to a fully-integrated platform as advo-
cated in literature is difficult, as it requires transforming
assets not intended for reuse into a set of fully reusable
assets that features map to. Furthermore, the transition
requires introducing new processes, training, and switching
development focus from a single variant to the entire family
of variants. Such a transition disrupts the organization’s

ability to operate and continue development [14].
In reality, there are many practical intermediate points

between the clone-and-own and the fully integrated platform.
Whether the effort spent by an organization on preparation
for reuse (either via clone management or PLE) is justifiable
depends on the required frequency of reuse and the required
degree of consistency among the reused assets. In the follow-
ing, we present the governance levels of the virtual platform,
discuss their tradeoffs, and illustrate them, where applicable,
on the 101companies effort [3].

2.1 L0: Ad-hoc Clone-and-Own
Teams freely copy assets across projects and modify them

as needed, without any reuse strategy or process. No prepara-
tion for reuse is needed. Entire projects, assets, or fragments
of assets are copied. No notion of features is used and there-
fore no mapping of features to assets exists. A single project
containing all assets is used to derive one variant.
Advantages. Cloning is associated with many benefits [2,
8]. It is easy and fast for teams knowledgeable about the
project, since no special development tools or processes are
needed. Developers of a new variant are also independent
from the developers of the original, and free to modify it as
needed. Finally, as the original variant may have been tested
and used, the new variant may be usable from the beginning.
Disadvantages. If not carefully managed, cloning has seri-
ous drawbacks [2, 8]. It does not scale: with an increasing
number of variants, the overhead for synchronizing assets
may exceed the benefits of the initial reuse. Cloning also re-
quires governance and discipline among developers. Without
specified cloning practices and recorded provenance infor-
mation, the assets used to create the original and the clone
easily become disconnected and inconsistent. This can result
in redundant work and can hinder long-term evolution.
Tactics. Traditional small-scale reuse tactics such as com-
ponent libraries and frameworks can be used to make the
assets more reusable. Also, cloning can be better managed by
using branching and merging capabilities of a (distributed)
version control system, which automatically records some
information needed for locating features.
Example. The goal of 101companies [3] is to aggregate a
set of contributions from different authors who implement
the same set of features of a fictitious human resources man-
agement system, while illustrating different implementation
languages and techniques. The practice within 101companies
can be characterized as ad-hoc clone-and-own, except that
the system is described by a feature model. Each contribu-
tion is also characterized by a set of features, but without
any mapping to the assets. No libraries or frameworks are
used to make the project assets reusable.
Recommendation. Ad-hoc clone-and-own is appropriate
when the frequency of reuse is very low and maintaining the
consistency among the projects is not important.

2.2 L1: Clone-and-Own with Provenance
Teams record provenance information about the original

projects and per cloned asset. Teams use the provenance
information for impact analysis and change propagation.
Advantages. Provenance information enables propagation
of extensions and bug fixes among the cloned assets. During
development of an original asset, teams can send notifications
about changes to teams working on the clones. Conversely,
teams working on a cloned asset can decide whether change

Figure 1: Recording provenance information

progagation is needed upon receiving a notification.
Disadvantages. Since the provenance information is coarse-
grained (entire asset), teams need to manually locate the
relevant fragments of assets and propagate the change.
Tactics. Develop small, cohesive assets. Use facilities of a
version control system, such as branching, to isolate modi-
fications into coherent groups across assets, and exchange
changesets. Incorporate metadata using explicit feature an-
notations in code or in commit messages. Use clone detection
tools to recover provenance information.
Example. In 101companies, we extended the metadata
of a contribution to contain information about the origi-
nal contribution it was cloned from. Fig. 1 illustrates two
contributions: HStarter and HProf. Solid line boxes rep-
resent the projects. The shapes numbered 1–5 represent
fragments of assets contained within the projects. Dashed
lines represent the provenance links (cloneOf) for project
HProf = cloneOf(HStarter) and for asset 4 HProf::4 =

cloneOf(HStarter::4). We can also see that asset 5 was
not cloned. We analyzed the version control history to detect
instances of cloning and recover provenance information. We
detected that in a commit to HProf, a new asset 4 was added
which was a clone of an existing asset 4 in project HStarter,
that is, asset 4 was cloned from HStarter to HProf.
Recommendation. Clone-and-own with provenance is ap-
propriate when the frequency of reuse is low and maintaining
the consistency among the assets is moderately important.

2.3 L2: Clone-and-Own with Features
Features succinctly characterize the functionality of a vari-

ant from the customer’s point of view. Teams declare features
and map them to asset fragments that implement them. Fea-
tures can be modular (implemented in a single asset) or
cross-cutting (distributed across assets), or tangled (a single
asset can contain overlapping fragments corresponding to
many features). Teams propagate features among projects
by cloning the corresponding asset fragments and recording
provenance information. Teams leverage notifications about
feature-related changes and perform change propagation.
Advantages. Features provide a functional decomposition,
and allow reasoning about the co-evolution of projects and
their assets in terms of features instead of physical assets.
Teams benefit from a better overview of the projects in terms
of user-relevant functions. Teams can make better reuse
decisions and more easily propagate features across projects,
as the relevant fragments of assets can be located easily.
Disadvantages. Features can have complex dependencies
and interactions, challenging their reuse. Thus, teams need
to rely on intricate domain and implementation knowledge.
Tactics. Use a framework for managing cloned product vari-
ants, such as Rubin et al. [13, 11, 12], which treats features
as the prime reuse units. It relies on metadata about the fea-
tures of variants, their location in code, their dependencies,
and their origins if cloned from other projects. Thus, relevant
fragments can be located. Operators and metadata as speci-

Figure 2: The scenario Create Project

Figure 3: The scenario Propagate Feature

fied by Rubin et al. support the following scenarios in this
level: refactoring to introduce features, variability and com-
monality analysis, propagating and sharing features among
variants, retiring features, and establishing new variants [12].

Further, use white-box reuse approaches, such as those by
Holmes and Walker [5]. Such approaches identify other parts
of the implementation that features depend on using various
techniques, including static code analysis.
Example. We applied a variation of Rubin et al.’s clone
management framework to 101companies, and implemented
tool support for feature location and two scenarios as follows.

The scenario Create Project is shown in Fig. 2 (block ar-
row). We represent the metadata using dashed lines: a box
for the features of a project and arrows for the mapping of
the features to asset fragments. For example, the project
HStarter implements three features, cut, total, and bonus,
which are mapped to fragments 1, 3, and 5. The other frag-
ments, 2 and 4, are integral to the project. The mapping
between features and asset fragments is computed automat-
ically by a simple feature location algorithm. We use the
links cloneOf to record the provenance of features.

Developers create a new project from an existing project
by deselecting undesired features. In Fig. 2, a developer
selected the project HStarter and deselected the features
total and bonus. Since cut requires the feature total, both
must be cloned. The developer deselected the feature bonus

and therefore the corresponding asset was not cloned. In our
approach, instead of physically removing fragments of the
features that are not cloned, we comment these fragments
out to compensate for the imprecision of the feature location.
Also, features which cannot be located are always cloned
since they cannot be commented out. Asset fragments 2 and
4 were also cloned as they are integral parts of the project.
Provenance information (cloneOf) was also recorded.

Thereafter, developers manually inspect the assets, build
the project, and uncomment the code that is still needed.
For instance, in one case, parts of the implementation of one
unselected feature were used in implementation of a cloned
feature—these needed to be uncommented for the project
to build. Finally, the developer confirmed the successful
creation of a new project, while our tool recorded the set of
features and their provenance information.

The scenario Propagate Feature is shown in Fig. 3 (block

arrow). Developers first identify dependencies of a feature
they want to propagate. Next, they retrieve fragments of
assets related to the given feature and its dependencies.
Finally, they clone the needed fragments to their project,
using and recording provenance information. In Fig. 3, the
team of HStarter’ propagated a new feature depth and the
extended feature cut’ from HProf’. In the resulting project
HStarter", fragment 1 was replaced by the new fragment
HProf’::6, and the fragment HProf’::8 was added.
Recommendation. Clone-and-own with features is appro-
priate when the entire features are reused and the frequency
of reuse is medium as well as reasoning about the features
and maintaining the consistency among them is important.

2.4 L3: Clone-and-Own with Configuration
For individual projects, teams add the capability to disable

features and to derive variants by selecting subsets of features.
They add feature constraints to exclude invalid combinations.
Advantages. The ability to derive multiple variants from a
single project reduces cloning and increases reuse potential.
Disadvantages. Focus of a developer is shifted from a single
variant to a set of variants, which complicates development.
Tactics. Use a feature model [7] per project, to define fea-
tures and constraints; use a configurator. Use traditional
variability mechanisms, such as configuration parameters,
preprocessors, generators, or component frameworks.
Recommendation. Clone-and-own with configuration is
appropriate when frequent derivations of similar variants con-
taining subsets of features are needed and when maintaining
the consistency among the projects is important.

2.5 L4: Clone-and-Own with a Feature Model
An organization creates a central feature model that covers

all projects and all implemented features. Teams create new
projects by taking an existing project as a basis and then
propagating the needed features from all other projects as
allowed by feature model constraints. Teams extend the
central feature model.
Advantages. The assets distributed across the projects are
reusable as if they were integrated into a platform. The
central feature model constrains the valid combinations of
features that can be reused together.
Disadvantages. The assets are still distributed and their
consistency still needs to be managed. Multiple versions of
the same feature exist. Manual integration of the cloned
assets is needed as they are not prepared to work with each
other as there is no product line architecture.
Tactics. Merge feature models of projects into the central
feature model.
Example. We envision the scenario Create Project as follows.
Fig. 4 shows a feature model containing features from a
number of contributions. The team creates a new project
HSimple by selecting three features. The tool creates the
project by cloning the fragments implementing these features.
Recommendation. Clone-and-own with a feature model
is appropriate when the frequency of reuse is high, a global
overview of all features and constraints among them is needed,
features need to be reused from many projects, and maintain-
ing the consistency among the cloned features is important.

2.6 L5: PLE with an Integrated Platform and
Clone-and-Own

An organization creates a platform project and a platform

Figure 4: The scenario Create Project, cf. Fig. 3

team. This team adds configurability to the platform so that
project teams can derive variants by configuring the platform.
However, this team also merges existing projects into the
platform and harvests features from existing projects.
Advantages. Increased scale, improved change propagation,
reduced redundancy, and configuration over implementation.
Although an integrated platform is created, other projects
can still be kept and developers can still work on projects as
cloning is still allowed. Project teams are not restricted by
the platform, which supports innovation.
Disadvantages. Same as level 4, although reduced in sever-
ity as the amount of cloning is reduced and consistency is
managed through the platform. Projects receive updates
when adopting a new version of the platform.
Tactics. Use a clone management framework, such as Ru-
bin et al. [13, 11, 12], to perform development of common
architecture and common assets, merging initial set of cloned
variants, bringing additional variants into the platform.

Use traditional annotative and compositional PLE tech-
niques [9], which rely on a configuration mechanism (e.g.,
build system and preprocessor) or a suitable software archi-
tecture leveraging programming-language-level mechanisms.
Recommendation. PLE with an integrated platform and
cloning is appropriate for frequent reuse, a global overview
of all features and constraints among them is needed, and
maintaining consistency among projects is important.

2.7 L6: PLE with a Fully-Integrated Platform
Teams only use shared assets contained in the integrated

platform to derive variants. The platform is completely
specified by a feature model: given a set of desired features, a
new variant can be completely—often automatically—derived
from the platform. No development happens within projects.
Advantages. Makes the sharing of assets explicit, which
allows developers to reduce redundant implementation and
to propagate new features, extensions, and bug fixes. The full
platform integration minimizes custom code for new variants.
Disadvantages. Poses high risks. PLE adoption requires
disruptive organizational changes, including a new platform
team and new processes for product teams [4]. Relying on the
platform for new products also hinders innovation, because
the platform restricts developers’ freedom, while cloning
may still not be entirely prevented [2]. Beginning with a
fully integrated platform approach is often not practical,
as organizations cannot anticipate all future variants and
features. Cost can be also very large [10]. In fact, our survey
shows that only a minority of industrial product lines was
adopted pro-actively [1]. Most were evolved from one variant
or re-engineered from a set of cloned variants.
Tactics. Use annotative and compositional PLE approaches.
Recommendation. A fully integrated platform is hard to
achieve, since new features, extensions, and bug fixes are
continuously and concurrently developed within projects.

Development within a platform, without a project context,
is possible but difficult, since projects provide motivation,
requirements, and a testing environment. Only changes
worth of propagation and sharing are harvested into the
platform. Thus, a platform rarely covers 100% of variants.

3. CONCLUSION
We presented an incremental and minimally invasive strat-

egy for adoption of PLE called virtual platform. It combines
the flexibility of clone-and-own with the scalability and con-
sistency of traditional platform-based PLE using common
variability mechanisms. We presented six governance levels
as a roadmap for seamless and gradual adoption of PLE,
thus eliminating costly, disruptive, and high-risk transition
processes. Adopting each level provides incremental benefit.
Acknowledgements. We thank Julia Rubin for discussions
about the relationship between the virtual platform and her
clone management framework.

4. REFERENCES
[1] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,

K. Czarnecki, and A. W ↪asowski. A survey of variability
modeling in industrial practice. In VaMoS, 2013.

[2] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski,
M. Becker, and K. Czarnecki. An exploratory study of
cloning in industrial software product lines. In CSMR,
2013.

[3] J.-M. Favre, R. Lämmel, T. Schmorleiz, and
A. Varanovich. 101companies: a community project on
software technologies and software languages. In
TOOLS, 2012.

[4] W. A. Hetrick, C. W. Krueger, and J. G. Moore.
Incremental return on incremental investment:
Engenio’s transition to software product line practice.
In OOPSLA, 2006.

[5] R. Holmes and R. J. Walker. Systematizing pragmatic
software reuse. ACM Trans. Softw. Eng. Methodol.,
21(4):20:1–20:44, Feb. 2013.

[6] H. P. Jepsen, J. G. Dall, and D. Beuche. Minimally
invasive migration to software product lines. In SPLC,
2007.

[7] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Tech. Rep., SEI, CMU, 1990.

[8] C. Kapser and M. Godfrey. “cloning considered harmful”
considered harmful. In WCRE, 2006.

[9] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE, 2008.

[10] L. N. P. Clements. Software Product Lines: Practices
and Patterns. Addison-Wesley, 2001.

[11] J. Rubin and M. Chechik. A framework for managing
cloned product variants. In ICSE, 2013.

[12] J. Rubin, K. Czarnecki, and M. Chechik. Managing
cloned variants: A framework and experience. In SPLC,
2013.

[13] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik.
Managing forked product variants. In SPLC, 2012.

[14] F. Stallinger, R. Neumann, R. Schossleitner, and
S. Kriener. Migrating towards evolving software
product lines: Challenges of an SME in a core
customer-driven industrial systems engineering context.
In PLEASE, 2011.

	Introduction
	Virtual Platform
	L0: Ad-hoc Clone-and-Own
	L1: Clone-and-Own with Provenance
	L2: Clone-and-Own with Features
	L3: Clone-and-Own with Configuration
	L4: Clone-and-Own with a Feature Model
	L5: PLE with an Integrated Platform andClone-and-Own
	L6: PLE with a Fully-Integrated Platform

	Conclusion
	References

