
ClaferIG

Correcting Clafer models with automatic analysis

Jia Liang
Generative Software Development Lab

University of Waterloo
Canada

jliang@gsd.uwaterloo.ca

ABSTRACT
ClaferIG1 is primarily a command line tool for generating
instances for the Clafer2 modeling language. The tool is an
important part of the Clafer family. This paper outlines a
few big issues with writing Clafer models and how ClaferIG
tackles them. The main focus of the paper is debugging
models with small portions devoted to related topics. The
final sections are dedicated to limitations and possible di-
rections to extend the power of the tool.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods

General Terms
Verification

Keywords
Clafer, Model finding, UNSAT

1. INTRODUCTION
Clafer is a lightweight modeling language designed for con-
ciseness and readability. Clafer models assist communicat-
ing requirements across experts of varying domains. The
language aims for a low learning curve and should be eas-
ily understandable by non-technical personnel. Stakeholders
and domain experts can verify that the model captures the
correct specification if they find the model semantics easy
to grasp.

Writing correct models is difficult despite the simplicity of
Clafer. The modeller needs to examine the model from all
angles for agreement with the intended specification. Any

1ClaferIG is an open source project found here:
https://github.com/gsdlab/claferIG
2Clafer is an open source project found here:
https://github.com/gsdlab/clafer

work or patches on the model can drastically alter the se-
mantics of the model and introduce unintended negative ef-
fects. This motivates the creation of tools to assist in writing
correct models. Ideally, models should be built incremen-
tally and verified at each stage for correctness, much like
programming applications with programming languages.

The Clafer translator is the center of the Clafer project. It
compiles a Clafer model into an equivalent Alloy model and
performs some analysis on the model during the compila-
tion. The outputted Alloy model can be executed in the
Alloy Analyzer to generate Alloy instances. A model is sat-
isfiable, or consistent[2], if there exists at least one instance
of the model. Verifying satisfiability of a Clafer model is
performed in the following sequence: translate the Clafer
model to Alloy; execute the Alloy model; if the Alloy ana-
lyzer returns at least one instance, then the Clafer model is
satisfiable, otherwise the model is unsatisfiable for the given
scope. Technically, it is possible to manually translate the
generated Alloy instances back to Clafer instances, but this
process is done by hand and requires significant overheard
per instance. Regardless, with a little bit of scripting, Clafer
models can be checked for satisfiability automatically.

2. SATISFIABILITY
satisfiable(model, scope) = truthvalue (1)

A model is a formal specification. A specification where
conformance is impossible is useless in practice. Likewise,
an unsatisfiable model is indicative of an error in the model.
Either the model has an incorrect encoding of the intended
properties or the intended properties are contradictory. The
satisfiable function is helpful because it can automatically
flag the unsatisfiable model as incorrect.

A Clafer modeller can start with a minimal model verified by
the satisfiable function and verified again after every change.
This incremental process of building a model helps catch
errors as early as possible. If the model becomes unsatisfi-
able after the latest changes, then something amongst the
set of recently introduced changes is causing conflict within
the model. The source of error is localized to one batch of
changes.

Now Clafer has an automatic method of checking for a cer-
tain class of errors. Is the satisfiable function satisfactory
for writing bug-free Clafer models?

2.1 Under-constraint
The satisfiable function does not detect the class of under-
constraint errors. An under-constraint model is a model that
accepts more instances than intended because it is missing
some constraint(s) that rule out those extra instances.

Listing 1 is a model of people and their spouses. The con-
straint enforces the rule: your spouse’s spouse is yourself.
From a quick glance, the model appears to capture the speci-
fication of people and marriages. Upon closer inspection, the
model is too permissive and accepts incorrect instances.

Listing 1: Spouses model
1 abstract Person
2 marriedTo→ Person ?
3 [this = marriedTo.marriedTo]
4

5 Alice : Person
6 Bob : Person

Feeding the spouses model and a small scope to the satisfi-
able function returns true. From the stance of satisfiability,
the model is perfectly legitimate. However, the model suffers
from under-constraint and the satisfiable function does not
make this obvious. The model accepts an instance where
Alice is married to herself and Bob is married to himself.
Self-marriage is an unintended property and an error in
the model. A constraint that forbids instances with self-
marriage is missing.

Listing 2: Corrected spouses model
1 abstract Person
2 marriedTo→ Person ?
3 [this = marriedTo.marriedTo]
4 [this 6= marriedTo]
5

6 Alice : Person
7 Bob : Person

An under-constraint model is satisfiable because it accepts
some intended and unintended instances. The satisfiable
function is impartial towards correct models and under-constraint
models, therefore detecting this class of errors is impossible
with this function alone.

2.2 Over-constraint satisfiable
Over-constraint is the reverse of under-constraint, the model
rejects some intended instance(s). An over-constraint but
satisfiable model accepts a non-empty, proper subset of in-
tended instances.

Listing 3 is a model of all natural numbers. However, the
model is incorrect. It captures all intended instances except
for the case where A = 1. The constraint is the source of
the bug, it should be [A ≥ 1].

Listing 3: Natural numbers
1 A : integer
2

3 [A > 1]

The model is still satisfiable, and the satisfiable function
returns true. Just like under-constraint, the function does
not help detect this of class of errors.

2.3 Insufficient scope
Ideally, if the satisfiable function returns false, then the
model is unsatisfiable. However, due to undecidability of
first-order logic, the satisfiable function for Clafer requires a
scope as a compromise. The scope draws a finite boundary
around the search space of instances, reducing a possibly
infinite space to a finite one. When Clafer’s satisfiable func-
tion returns false, it claims that the model is unsatisfiable
for the given scope. It makes no commitment about the
unsatisfiability of the model in general.

The satisfiable function returning false does not guarantee
an error in the model because an insufficient scope will pro-
duce a false positive. Listing 4 is a model where the satisfi-
able function returns false when the scope ≤ 4. The model
is correct however, and increasing the scope will show that
it can be satisfied.

Listing 4: Five or more
1 A 5.. ∗

When checking for unsatisfiability, the modeller needs to re-
run the function with increasing scopes until he or she feels
confident that the problem is indeed an unsatisfiable model
and not a limitation of scope. There is a trade-off when up-
ping the scope: increasing the scope increases the confidence
in the function[3]; increasing the scope drastically increases
the computation required and deteriorates the performance.

Manually setting the scope is a nuisance for models with
many objects. A lazy user will increase the global scope to
the scope required by the most demanding object, needlessly
multiplying the instance search space. Hand-selecting indi-
vidual scopes for the objects is more dignified but laborious.

2.4 Over-constraint unsatisfiable
The class of over-constraint and unsatisfiable models are
models that do not accept any instances given any finite
scope. This is the original class of errors the satisfiability
function tries to detect.

Listing 5 is the model of all numbers A that are both odd
and even. Unknowingly, the set of even and odd are disjoint
so the model is unsatisfiable. The intention of the modeller
was wrong, he or she is attempting to model a contradiction.
The problem should be abandoned or restated.

Listing 5: Even and odd
1 A : integer
2 B : integer
3 C : integer
4

5 [A = 2 ∗ B]
6 [A = 2 ∗ C + 1]
7 [B > 0]
8 [A > 0]
9 [C > 0]

Not all over-constraint models are from wrongful intent. It
is possible that the intent was right but the execution was
wrong. Listing 6 is a model of legal driving age. In Canada,
the legal driving age is 16. The model enforces the driving
age by constraining all eligible drivers to be 16 years old or
older.

Listing 6: Drivers
1 abstract Person
2 CanDrive ?
3 Age : integer
4 [CanDrive =⇒ Age ≥ 16]
5

6 Alice : Person
7 [CanDrive]
8 [Age = 15]

The driving age rule is specific to the Canadian jurisdiction
and it does not apply to Alice, a native of New Zealand,
where she can legally drive at the age of 15. The addition of
Alice breaks the model because it tries to enforce the Cana-
dian legal driving age on everyone. The constraint needs to
be rewritten to be less restrictive and apply only to Cana-
dians.

An unsatisfiable model needs to be corrected. The satisfiable
function helps detect unsatisfiability but does explain why
it is. Debugging a large model with many constraints can
be difficult without any hints.

3. CLAFERIG
Due to the problems listed above, the satisfiable function
is severely limited in its usefulness, but the promise of an
automatic verification tool is appealing. ClaferIG extends
the function in different directions with more powerful al-
gorithms to deal with issues caused by the classes of errors
discussed earlier. The goal is to create a well-rounded tool
that detects and explains the source of errors. Any serious
Clafer modeller should consider having ClaferIG in their tool
belt.

The current back end is Alloy. Alloy’s back end is Kod-
kod. Kodkod’s back end is a SAT solver implementation.
This relationship is important and the following sections will
comment on the implementation hierarchy when relevant.

3.1 Model finding
The problem with under-constraint models is too many in-
stances. The satisfiable function only cares for existence of
instances, disregarding their shape, size, and number. In-
stead of returning true or false, the satisfiable function can
return the number of instances that satisfy the model so the
modeller can see if there are too many. However, this would
require the modeller to know how many instances to expect
before making the comparison. For large models, this ap-
proach is not feasible due to symmetry breaking[5][6], and
isomorphism[4].

Instead, the instances should be the output. The function
that takes a model and scope and returns all the instances
within the scope is called the model finding function. The

Figure 1: Proving under-constraint

modeller can scrutinize the instances for unexpected abnor-
malities.

modelfind(model, scope) = {instances} (2)

ClaferIG implements model finding for the Clafer language.
The implementation heavily relies on Alloy’s model finding
algorithm. Listing 7 shows one of the instances of running
Listing 1 with ClaferIG.

Listing 7: ClaferIG instance for Listing 1
1 Alice
2 marriedTo1 = Alice
3 Bob
4 marriedTo2 = Bob

The problem with the model is visible. Self-marriage is not
intended but the instance proves that the model does not
adequately restrict it. Once the missing constraint is added,
this instance is removed. Hence detecting under-constraint
simply requires finding one unintended instance in the set of
instances returned by the model finding algorithm. For large
models, the algorithm will return many instances and the
modeller will need to manually inspect as many as possible.

In the context of debugging models, model finding is useful
for detecting the class of under-constraint errors. Aside from
debugging, there are other reasons for wanting model finding
for Clafer.

3.1.1 Education
Clafer aims to be easy to learn, and the best way to learn is
to play with language. The syntax is easy to learn because
the Clafer translator will report any malformed syntax. The
syntax is easy to grasp through experimentation with the
Clafer translator to see what passes and what fails.

Understanding the semantics is quite tricky. Without ClaferIG,
a novice modeller does not see any Clafer instances. The

novice must understand the Alloy output to play around
with the Clafer semantics.

With ClaferIG, the learning is more hands-on. A novice can
toy around with a Clafer model to see how changes in the
model affect the set of generated instances. This is a more
approachable method of discovering how the semantics of
Clafer work.

Model finding is not only useful for beginners learning the
language. Clafer experts can use the generated instances to
help visualize the model. Instances created by ClaferIG are
auto-generated “documentation” that are useful for explain-
ing, recalling, and discussing the intent of the model within
a group of modellers, some who are possibly unfamiliar with
the work.

3.1.2 Product line
Clafer modelling unifies feature and class modelling and can
naturally capture variability of a product line in a single
model[1]. Listing 8 is a model of a computer product with
one feature of interest: performance. The performance fea-
ture is split into two mutually exclusive subfeatures: fast and
slow. The architecture and physical components of the com-
puter are detailed under Computer. A computer is “fast” if it
has more than 4GB of Ram and clock speed exceeds 4GHz.
Slow is the negation of fast because it is the only alternative
subfeature within the xor group.

Listing 8: Computer
1 Computer
2 GbRam : integer
3 Ghz : integer
4

5 xor Performance
6 Fast
7 Slow
8

9 [Fast ⇔ GbRam ≥ 4 && Ghz ≥ 4]

Creating a custom product is as simple as defining the set
of features the product must contain. Desired feature(s) are
appended as additional constraints to the model. For exam-
ple, adding the constraint [Fast] (semantically equivalent
to the constraint [some Fast]) will require the computer to
be “fast”. Running the example in ClaferIG will generate
all possible configurations of computers with the “fast” fea-
ture. In practice, a product line will have an assortment of
features to choose from. ClaferIG will find all possible com-
binations of configurations that satisfy the set of requested
features.

ClaferIG can return many possible answers but some con-
figurations are preferable when creating a new product. A
high-end commercial computer and a state-of-the-art super-
computer both implement the “fast” feature but a customer
might be more inclined to purchase one over the other due
to finances. There is current work on Clafer for maximiz-
ing and minimizing objectives when searching for instances3.
When used in conjunction with ClaferIG, it will be possible

3The work is based on Moolloy, an extension of Alloy:
http://sdg.csail.mit.edu/moolloy/

to configure a product based on features while optimized
against a set of criteria like cost.

3.2 UNSAT Core
An unsatisfiable model is too restrictive because a subset
of constraints are imposing conditions that are impossible
to meet. If the model is mostly correct then only small a
subset of the constraints are problematic. When ClaferIG
detects unsatisfiability, it will return this subset of unsatis-
fiable constraints called the UNSAT core. The implementa-
tion is based on the Alloy’s UNSAT core algorithm.

Listing 9: ClaferIG UNSAT core of drivers
1 No more instances found. Try increasing

scope to get more instances.
2 The following set of constraints cannot

be satisfied in the current scope.
3 1) some this . CanDrive
4 2) (this . Age) = 15

Listing 9 shows the output of ClaferIG after running the
model in Listing 64, and it detected that the model cannot
be satisfied. Two constraints cannot be simultaneously true:
the constraint claiming that Alice can drive; the constraint
stating that Alice is 15 years old.

ClaferIG’s output matches the intuitive explanation of the
error, Alice cannot be 15 and a driver. The message pin-
points why the model is over-constraint and directs the at-
tention to the critical sites. The modeller will either modify
the national driving rules or revoke Alice’s driving privilege
to correct the model.

A trivial UNSAT core is the subset containing every con-
straint but a useful core is more limited. A smaller core
is more precise because it narrows down the actual faulty
constraints. In theory, the minimal UNSAT core is ideal
but minimizing the core is an expensive operation. The
back end of ClaferIG implements three settings, in order of
fastest to slowest: initial UNSAT core, medium minimiza-
tion, guaranteed local minimum. ClaferIG sets the fastest
setting by default and allows the user to switch between set-
tings. The slowest setting is many times more expensive
than the fastest and the gains are often small.

3.3 Fix
An unsatisfiable model is incorrect and needs to be fixed.
ClaferIG understands the problem, a subset of constraints
cannot be satisfied. It will try to“fix”the model by removing
constraints inside the UNSAT core until the modified model
is satisfiable.

Listing 6 has two constraints in the UNSAT core. ClaferIG
will attempt to fix the model by removing one of the two
constraints. Listing 10 shows the actual output. The con-
straint stating “Alice is an eligible driver” is removed and
new model is now consistent.

4Due to a temporary limitations with the parsing method of
the Clafer translator, the reported faulty constraints do not
match the exact syntax in the user-defined model. ClaferIG
shows the internal AST representation of the constraint until
the limitation is resolved.

Listing 10: ClaferIG fix of drivers
1 Altering the following constraints

produced a counterexample.
2 1) removed some this . CanDrive
3 Alice
4 Age = 15

After fixing the model, ClaferIG shows a hypothetical in-
stance if the modeller follows the suggested fix. In Listing
10, removing Alice’s driving eligibility generates an instance
where Alice is 15 years old and cannot drive. The instance is
dubbed the counterexample, although misleading since the
term has a different meaning in Alloy[3]. A new term is
needed to avoid confusion.

The process of selecting the constraint from the UNSAT
core to remove is arbitrary. When fixing a model, some con-
straints should be favoured by the constraint selector, rather
than the current simple approach. For example, cardinality
constraints should be prioritized last. This requires further
investigation.

3.4 Scope
The trade-off imposed by the scope is a big challenge, a small
scope limits the power of ClaferIG but a large scope grinds
it to a halt. Solving Clafer models is an NP-complete task
and the slightest increase in scope has a noticeable effect
on computation time. The scope sweet spot is the mini-
mum scope that satisfies the model. Running model finding
with the minimum scope is the fastest possible execution
that returns an instance. If the modeller would like more
instances, then he or she can slowly increase the scope past
the minimum.

Hand computing the minimum scope is too primitive and
tedious, ClaferIG should automatically compute the scope
of the model. If the model is not satisfiable, then set the
scope to 0.

minimumScope(model) =
minimum(scope)
where
satisfiable(model, scope)

(3)

Implementing the minimumScope function is difficult. Find-
ing a counterexample for Fermat’s last theorem specialized
for a given degree is reducible to a minimum scope problem.
Applying Listing 11 to the hypothetical minimumScope will
either find the smallest counterexample of Fermat’s last the-
orem for the given degree, or internally prove Fermat’s last
theorem for the specified degree and set the scope to 0.

Listing 11: Disprove Fermat’s last theorem for de-
gree 3

1 A 1.. ∗

2 B 1.. ∗

3 C 1.. ∗

4

5 [(#A × #A × #A) +
6 (#B × #B × #B) =
7 (#C × #C × #C)]

A Clafer model consists of two types of elements, clafers
and constraints. Clafers contain accessible scope informa-
tion such as cardinalities and hierarchies but constraints
make analyzing scope difficult. ClaferIG’s scope analysis
algorithm ignores constraints and only traverses the clafer
regions of the model5. This subproblem is tractable and the
result approximates the ideal minimumScope function. The
subsections below outline the algorithm and the problems
encountered during implementation.

3.4.1 Parents and children
The analysis of the parent clafer must precede the analy-
sis of its children. In Listing 12, any valid instance must
contain at least 3 vehicles and at least 4 wheels per vehicle.
The algorithm ignores the upper cardinalities of the clafers,
only the lower cardinalities affect the minimum scope. After
analyzing the Vehicle and then Wheel clafers in that order,
the algorithm concludes that minimum scope of the model
is {V ehicle→ 3,Wheel→ 12}.

Listing 12: Automotive system
1 Vehicle 3..4
2 Wheel 4.. ∗

3.4.2 Supertypes and subtypes
The analysis of the subtypes must precede the analysis of
its supertype. In Listing 13, the algorithm needs to analyze
CarA and CarB before Vehicle. The set of subtypes form
a partition of the super type. The minimum scope must
contain at least 1 CarA and 2 CarB. Therefore any valid in-
stance will contain at least 3 vehicles and therefore at least
12 wheels.

Listing 13: Automotive system
1 abstract Vehicle
2 Wheel 4.. ∗

3

4 CarA : Vehicle
5 CarB : Vehicle 2..3

3.4.3 References
The analysis of the references must precede the analysis of its
referee. In Listing 14, CarLot cannot be satisfied unless there
exists at least 3 vehicles and therefore at least 12 wheels.

Listing 14: Automotive system
1 Vehicle ∗

2 Wheel 4.. ∗

3

4 CarLot→ Vehicle 3.. ∗

The combination of references and subtyping is a special
situation. The algorithm needs to take the maximum be-
tween the subtype and reference analysis. In Listing 15, the
CarLot references must refer to at least 3 vehicles. How-
ever, the subtype scope analysis already designated 2 CarA

5The scope analysis algorithm now resides in the Clafer
translator source. It is useful outside of ClaferIG as well.

and 2 CarB, hence there are enough vehicles in the model
to satisfy the CarLot reference requirement. The minimum
scope is {CarLot → 3, CarA → 2, CarB → 2, V ehicle →
max(2 + 2, 3) = 4,Wheel→ 16}.

Listing 15: Automotive system
1 abstract Vehicle ∗

2 Wheel 4.. ∗

3

4 CarA : Vehicle 2.. ∗

5 CarB : Vehicle 2.. ∗

6

7 CarLot→ Vehicle 3.. ∗

3.4.4 Dependency
definition 1. Clafer A depends on clafer B if the scope

analysis of B must precede the scope analysis of A.

For the minimum scope algorithm to compute the correct
result, it needs evaluate the clafers in an order that respects
the rules of dependency. The 3 rules of dependencies dis-
cussed previously are:

Parent dependency A child depends on its parent.

Subtype dependency A supertype depends on its sub-
types.

Reference dependency A referee depends on its referers.

A dependency graph is a directed graph where the nodes are
clafers and the edges are the dependencies. If the graph only
contains parent dependencies, then the graph is a collection
of trees where the root clafers are the root nodes. Listing
16 is a model without references and subtyping and its de-
pendency graph consists of two trees. The order of solving a
dependency graph of trees is simple, solve the top level and
then the next level, and so on.

Listing 16: Parents
1 A
2 B
3 C
4 D
5

6 E
7 F

A

B

C

D

E

F

Parent dependencies create dependencies in the form of trees
and the order of evaluation is simple. Subtype and reference
dependencies create edges between trees and the dependency

graph loses the simple tree forms. In the worst case scenario,
it is possible to form cycles in the dependency graph. The
order of solving with all 3 dependencies is not trivial.

The evaluation order of scope must respect the dependency
graph. A common strategy for evaluating a dependency
graph is to evaluate on the topological order. Unfortunately,
topological sort requires an acyclic dependency graph. To
overcome this limitation, first compute all strongly connected
components of the graph, and find the topological order of
the components. Solve each component in this order. If each
component is a singleton, then the dependency graph con-
tains no cycles and the scope evaluation proceeds without
hurdles. If a component is larger than a singleton, then the
algorithm employs an heuristic to solve the cycle of clafers.
The current heuristic is to assume the scope of each clafer
in the component to be 1 and solve the component’s clafers
in an arbitrary order. The frequency of cyclic scope depen-
dencies in practice is unknown.

4. IMPLEMENTATION
ClaferIG requires two tools, the Clafer translator and the
Alloy analyzer API. Alloy is currently the only supported
back end for the Clafer language and plays a large role in
the semantics and functionality of Clafer.

When the ClaferIG executes, it passes the Clafer model to
the Clafer translator to retrieve 3 important pieces of in-
formation: the semantically equivalent Alloy model, the in-
ternal intermediate representation (IR) of the Clafer model,
and a mapping of constraints. The minimumScope of the
model is approximated with the algorithm discussed earlier.
The Alloy model is fed to the Alloy API to search for solu-
tions. If Alloy instances are found, ClaferIG will transform
every Alloy instance back into a Clafer instance. If the Al-
loy model is unsatisfiable, then ClaferIG will transform the
Alloy UNSAT core into a Clafer UNSAT core. The con-
straint mappings encode the types of the constraints in the
Alloy model and the relationship between the Alloy con-
straints and their corresponding Clafer constraints. The IR
is traversed to reconstruct the unsatisfiable constraints into
textual form.

ClaferIG needs to dynamically remove constraints to gener-
ate a fix for an unsatisfiable model. The mapping between
Alloy constraints and Clafer constraints is not one-to-one so
care is needed when choosing constraints to remove. For ex-
ample, the Clafer translator adds additional constraints in
the Alloy model to enforce structural rules between parent
and child clafers: a child belongs to one parent. Removing
these constraints will violate the semantics of Clafer. Con-
straint information is maintained in the constraint mappings
created by the Clafer translator and ClaferIG consults the
mappings to avoid catastrophic behaviour.

Kodkod, Alloy’s back end, requires a SAT solver for solving
models. Kodkod supports an array of SAT solver imple-
mentations, each with different advantages and disadvan-
tages. ClaferIG will always select the MiniSatP SAT solver
for 2 reasons, the implementation is fast and the solver im-
plements proof logging required for the UNSAT core opera-
tion. The MiniSatP binaries for a few popular architectures
are bundled inside the Alloy distribution. There are some

Figure 2: Over-constraint but satisfiable

portability issues distributing native binaries in this manner.
SAT4J, Alloy Analyzer’s default solver, is more reliable but
it does not offer proof logging. UNSAT core is an important
functionality of the project and any plausible alternative for
MiniSatP must provide proof logging support.

ClaferIG is written in Haskell and provides the command
line interface where the user interacts with their model. The
Alloy API is written in Java and is inaccessible to ClaferIG.
To overcome the language barrier, the project implements
a second component nicknamed AlloyIG that exposes rele-
vant Alloy API functionality through interprocess commu-
nication. The main ClaferIG process communicates with
AlloyIG via a simple protocol. Both components are main-
tained in the same open-source project.

ClaferIG invokes the Clafer translator with system calls. In
the future, the project will incorporate the Clafer translator
as a library instead to ease the communication and improve
robustness.

5. LIMITATION
The biggest limitation, from the perspective of debugging
models, is detecting over-constraint but satisfiable models.
Finding a single unintended instance is enough to recognize
under-constraint. Detecting over-constraint but satisfiable
models requires examining every instance returned by the
model finding algorithm and then realizing that an instance
is missing from the set for the current scope. This detection
scheme is impractical for models with many instances.

ClaferIG provides little assistance for the subclass of over-
constraint but satisfiable models. Neither model finding or
UNSAT core are adequate at solving this problem.

The Alloy language provides the condition syntax for de-
tecting this class of errors[3]. Each condition statement
guards against one specific case of possible over-constraint.
A large model may require many conditions for decent cov-
erage. The quality of the coverage depends on the intuition
and foresight of the modeller. There is no Clafer equivalent
in the current state of the language. More research is needed
in the future for tackling this issue.

6. FUTURE WORK
ClaferIG is still in its infant stage and it needs time to ma-
ture. Some features require further development. Here are
some challenging areas of research worthwhile of pursuit.

6.1 Smart fixes
Fixing a broken model is a delicate procedure. ClaferIG’s
only option for fixing a model is to remove constraints. There
are other options for repairing a model that should be con-
sidered.

Listing 17: Three’s company
1 Crowd
2 Member→ Person 3.. ∗

3

4 abstract Person
5

6 Jack : Person
7 Janet : Person

Listing 17 is an unsatisfiable model, a crowd requires 3 or
more people but there are only 2 people around. ClaferIG
will try to relax the model by removing the lower cardinal-
ity constraint of Member. The definition changes from Mem-

ber → Person 3..* to the less restrictive Member → Per-

son 0..*. After the change, there exists an instance with a
crowd of 0, hence the model is “fixed”.

The new definition of crowd does not match the real world
concept. A group of 0 people is a very pathetic crowd. Intu-
itively, the shortage of people is the cause of unsatisfiability
in Listing 17, the definition of Crowd is perfectly fine. A
less naive algorithm will fix the model adding a third per-
son Chrissy : Person, thus fulfilling the requirements im-
posed by Crowd. Improving the current fix algorithm is an
area of that needs attention.

6.2 Tightening scope
The ideal minimumScope function is not achievable. The goal
is to narrow the gap between the implemented scope analysis
algorithm and the hypothetical, ideal function.

The current algorithm should be extended to take constraints
into consideration. Constraints that begin with a quanti-
fier affect the minimum scope in a way that is amenable to
analysis. Listing 18 requires at least 6 AudioSystem and at
least 3 CDPlayer in the instance. The analysis is more com-
plex when the quantified expression is complicated. These
types of constraints are common when specializing abstract
clafers and modelling variability and they should not be ig-
nored. Other common constraints may affect the scope, and
requires further research.

Listing 18: Automotive audio system
1 abstract AudioSystem
2 CDPlayer ?
3

4 LuxuryCar 3.. ∗

5 audio : AudioSystem
6 [some CDPlayer]
7

8 CheapCar 3.. ∗

9 audio : AudioSystem

6.3 Isomorphism
Two instances are isomorphic if they are semantically equiv-
alent, but may have a different syntax due to structural
reordering. Listing 19 and Listing 20 are examples of an
isomorphic pair.

Listing 19: Isomorphic instance 1
1 Party
2 Person1
3 Leader
4 Person2

Listing 20: Isomorphic instance 2
1 Party
2 Person1
3 Person2
4 Leader

The model finding algorithm should filter out extra isomor-
phic instances. It is a waste of time for the modeller to
examine two isomorphic instances since they are the identi-
cal answer, just rephrased differently. Kodkod implements
symmetry breaking, an optimization that reduces isomor-
phic instances as a side effect[5]. In general, Kodkod and
ClaferIG may return many isomorphic solutions despite the
optimizations.

The Clafer instance isomorphism problem is similar to the
graph isomorphism problem with two exceptions: objects in
the Clafer instance are named; Clafer exhibits parent-child
structure between non-reference objects. However, Listing
21 shows how to embed a graph into Clafer such that de-
tecting isomorphism in the graph is equivalent to detecting
isomorphism in the corresponding Clafer instance. With this
reduction, Clafer isomorphism is at least as hard as graph
isomorphism in terms of complexity class.

Listing 21: Graph reduction
1 Node ∗

2 Edge→ Node ∗

The best known algorithm for checking graph isomorphism
runs in exponential time[5]. An algorithm for Clafer isomor-
phism will run in exponential time as well, barring a huge
breakthrough.

isomorphic?(instanceA, instanceB) = truthvalue (4)

One possible implementation of the isomorphic? function is
to modify a graph isomorphism algorithm to take the name
of nodes into consideration. The function would be applied
between all possible combinations of instances to filter out
all isomorphic duplicates. This approach is prohibitively
slow.

Another approach is to transform every instance into canon-
ical form, where every isomorphic instance has the same
form. Filtering out isomorphic duplicates can be done with
string comparison in a hash set. References are a challenge
for canonizing instances. A possible approach is to ignore
the edges created by references, and treat the instances as
trees. Canonize the trees by sorting nodes by size, breaking
ties with string comparison on node names. This algorithm
approximates the canonical form by ignoring references, and
will work poorly on instances where references are minimal.
On the positive side, it is a very fast algorithm. Perhaps it
can be extended with some clever insight to better approxi-
mate instances with references.

This area needs further investigation. The desire to remove
isomorphic duplicates is matched by performance concerns.
A compromise is possible if an approximation algorithm can
remove the majority of isomorphic duplicates without cost-
ing too much performance.

7. CONCLUSION
ClaferIG plays an important role in the Clafer ecosystem,
and a necessary step to expand the usefulness of the lan-
guage. The paper focuses on its use for debugging common
modelling errors. Model finding targets under-constraint er-
rors by searching for unintended instances. UNSAT core is
useful for debugging over-constraint and unsatisfiable mod-
els. ClaferIG will attempt to fix the model based on infor-
mation from the UNSAT core. The minimumScope approx-
imation algorithm works well with the hierarchical nature
of Clafer, and extendible to some cases of constraints. The
class of over-constraint but unsatisfiable models are an issue
for the tool. The paper proposes a few challenging directions
to extend the power ClaferIG.

8. REFERENCES
[1] K. Bak. Clafer: a unified language for class and feature

modeling. Technical report, Generative Software
Development Lab, April 2010.

[2] K. Bak. Optimized translation of clafer models to alloy.
Technical report, Generative Software Development
Lab, July 2011.

[3] D. Jackson. Alloy: A lightweight object modelling
notation. ACM Transactions on Software Engineering
and Methodology, 11(2):256–290, April 2002.

[4] E. Torlak. A Constraint Solver for Software
Engineering: Finding Models and Cores of Large
Relational Specifications. PhD thesis, Massachusetts
Institute of Technology, February 2009.

[5] E. Torlak and D. Jackson. The design of a relational
engine. Technical report, Massachusetts Institute of
Technology Computer Science and Artificial
Intelligence Laboratory, September 2006.

[6] E. Torlak and D. Jackson. Kodkod: a relational model
finder. In Proceedings of the 13th international
conference on Tools and algorithms for the construction
and analysis of systems, TACAS’07, pages 632–647,
Berlin, Heidelberg, 2007. Springer-Verlag.

