
Solving Clafer Models with Choco

Jia Hui Liang
Generative Software Development Lab

University of Waterloo
Canada

jliang@gsd.uwaterloo.ca

ABSTRACT
The Clafer modelling language relies on Alloy as its back-
end solver. Although Alloy is a good target language for
the Clafer compiler because of the strong similarities be-
tween the two languages, it suffers in the presence of large
integers. This paper explains the implementation of a new
Clafer solver based on the Java constraint programming li-
brary called Choco. The solver needs to capture the seman-
tics of the language including the hierarchy structure, type
inheritance, references, primitives, and constraints. Perfor-
mance of the solvers is the main metric for comparison.

1. INTRODUCTION
Clafer (class, feature, reference) is a lightweight modelling
language supporting both class modelling and feature mod-
elling[1]. The current implementation compiles Clafer mod-
els to Alloy where it is the subject of automatic analysis[3].
The analysis can perform satisfiability checks, instantiate
models, and find optimal configurations[4]. Alloy and Clafer
have similar semantics, thus Alloy is a good target language
for compilation. In fact, Clafer’s semantics is heavily in-
spired by Alloy’s semantics[1]. The Clafer language and
clafer2alloy compiler were designed and implemented in par-
allel. New Clafer solvers will have to reproduce Alloy-like
semantics in many places.

A Clafer model is a hierarchy of clafers and constraints.
The hierarchy is described by the indentation in the syntax,
as shown in Listing 1. Car, Engine, SteamEngine, Gaso-

lineEngine, ElectricEngine, Gastank, and Wheel are the
clafers in the model, whereas the expression [some Gastank]

is the constraint. Any expression within square brackets is a
constraint. The clafers Engine, Gastank, and Wheel all be-
long to the Car clafer hence the three clafers are nested at a
higher indentation level than Car. In Clafer terminology, Car
is the parent clafer and the others are child clafers. Like-
wise, SteamEngine, GasolineEngine, and ElectricEngine

are the children of the Engine clafer.

Listing 1: Car
Car

xor Engine
SteamEngine
Gasol ineEngine

[some Gastank]
E l e c t r i cEng ine

Gastank ?
Wheel 4 . . 8

xor is a group cardinality keyword that forces a choice on
Engine. It must choose exactly one child and exclude the
other two. The ? after Gastank is a cardinality keyword
for optional. The syntax Gastank ? is rewritten as Gastank
0..1 by the compiler, which states that every Car has be-
tween 0 to 1 Gastank. Likewise, it has between 4 to 8 Wheel.
If the cardinality is not explicitly stated in the syntax, then
it defaults to 1..1.

The constraint [some Gastank] asserts a condition within
our model, but is only enforced if its parent clafer Gaso-

lineEngine is present. In plain English, the constraint says
that there must at least one Gastank in the instance if Gaso-
lineEngine is in the instance, thus no gasoline-powered cars
without tanks. However the reverse is not necessarily true,
the model allows for cars with tanks powered by a non-
gasoline source.

Listing 2 is an instantiation/instance/solution of the model.
An instance must follow all the conditions stated by the orig-
inal model such as group cardinality, cardinality, and con-
straints. For example, removing Wheel3 from the instance
would violate the lower cardinality of the Wheel clafer in the
model.

Listing 2: Car instance
Car

Engine
Gasol ineEngine

Gastank
Wheel0
Wheel1
Wheel2
Wheel3

The Wheel clafers in the instance are numbered simply to
differentiate them. For example, renaming Wheel0 to Wheel5

and Wheel1 to Wheel0 does not change the semantics of the
instance. The instance in Listing 3 is isomorphic to the
instance in Listing 2.

Listing 3: Car isomorphic instance
Car

Engine
Gasol ineEngine

Gastank
Wheel5
Wheel0
Wheel2
Wheel3

A model may have many non-isomorphic instances. A model
with no instances is unsatisfiable or inconsistent [2], and in-
dicates a bug in the model. Generating instances is useful
for catching over-constraint[3].

Clafer implements integers and type inheritance. In List-
ing 4, Feature is an abstract clafer that does not appear
in the instantiation, its only purpose is for other clafers to
extend. Every Feature has a Cost and every Cost has a ref-
erence to an integer. SteamEngine, GasolineEngine, Elec-
tricEngine, Gastank, and Wheel extend Feature and thus
they all have a Cost.

Listing 4: Car features
abs t r a c t Feature

Cost −> i n t e g e r

Car
xor Engine

SteamEngine : Feature
Gasol ineEngine : Feature

[some Gastank]
E l e c t r i cEng ine : Feature

Gastank : Feature ?
Wheel : Feature 4 . . 8

Listing 5 is one instance of the new model. Note that the
cost of the features are not constrained in the model, hence
they can take on any value. The model is a good example of
an attributed feature model in Clafer[7]. If the cost of the
features are known, then they can be configured or fixed in
the model with constraints.

Listing 5: Car features instance
Car

Engine
SteamEngine

Cost = 4
Wheel0

Cost = 3
Wheel1

Cost = 2
Wheel2

Cost = 100
Wheel3

Cost = −234

Listing 6 fixes a cost to every feature in the model. For
example, [this.Cost.ref = 34] is a constraint that forces
the cost to refer to 34. In general, the expression can be
simplified as [this.Cost = 34] and the compiler will auto-
matically rewrite it as [this.Cost.ref = 34] during type
checking. The “.” is the join operator in relational logic.
Joining this with Cost will return the Cost clafer belong-
ing to “this” clafer. Joining that Cost with ref will return
the integer value. Joins are typically used to navigate down
the hierarchy. Clafer supports a special join called the par-
ent join for navigating in the reverse.

Listing 6: Car product line
abs t r a c t Feature

Cost −> i n t e g e r

Car
xor Engine

SteamEngine : Feature
[t h i s . Cost . r e f = 34]

Gasol ineEngine : Feature
[some Gastank]
[t h i s . Cost . r e f = 25]

E l e c t r i cEng ine : Feature
[t h i s . Cost . r e f = 32]

Gastank : Feature ?
[t h i s . Cost . r e f = 20]

Wheel : Feature 4 . . 8
[t h i s . Cost . r e f = 9]

TotalCost −> i n t e g e r
[TotalCost = sum Feature . Cost . r e f]

<<min TotalCost>>

Let’s take a closer look at the constraints in the previous
model. Constraint expressions are based on relational logic
and (almost) every expression evaluates to a set. this ex-
pression evaluates to a singleton set containing the current
clafer. this.Cost.ref will evaluate to a singleton set con-
taining the integer value of the cost of this. The equality
constraint this.Cost.ref = 34 states that the expression
this.Cost.ref equals the singleton set containing 341. In
fact, even clafers are sets. The Wheel clafer for example is a
set of size 4 containing Wheel0, Wheel1, Wheel2, and Wheel3

in Listing 5. This will have large ramifications later in the
paper.

Listing 6 is an example of a car manufacturing product line.
We can run the model to generate all possible instances of
the model. Each instance corresponds to a specific configu-
ration of a product, and the TotalCost stores the final cost
of the car. A keen buyer wants to minimize spending, so
his objective is to minimize the total cost of the car. This
objective is denoted as �min TotalCost� in the model.
Under this minimization objective, the analyzer must find
the instance with the lowest total cost. Clafer supports mul-
tiple objectives, where the solution will be the set of Pareto-
optimal instances[7].

1Perhaps it would make more sense mathematically for the
syntax to say this.Cost.ref = {34}

Clafer supports first-order expressions, and first-order logic
is famously undecidable. To cope with undecidability, every-
thing in Clafer is bounded. Integers have a lower and upper
bound. Clafers are bounded by scopes. Scope dictates the
maximum number of times a Clafer can appear in the so-
lution. For example, if Scope(Wheel) = 3, then Wheel can
appear at most 3 times in the instance, hence the instance in
Listing 5 is not allowed. Scopes are automatically computed
using a heuristic based on integer programming.

2. SOLVER
The current implementation only supports Alloy as the back-
end solver for analyzing Clafer models. The jump from
Clafer to Alloy is not too large. A clafer in the Clafer model
corresponds to a signature in the Alloy model. Logic in Al-
loy is also relational, thus the semantics between the two
languages are very alike. Alloy has its own backend called
Kodkod, a bounded constraint solver for relation logic. Kod-
kod in turn compiles the problem down to a boolean satis-
fiability problem and relies on SAT solvers such as Minisat
or SAT4J to solve the model. One problem with this stack
of solvers is the handling of integers. A Clafer model after a
series of steps is ultimately translated down to a boolean sat-
isfiability problem, so all the semantics of arithmetic need to
be encoded as well. The approach is called “bit-blasting”[8]
and the main drawback is that it does not scale well for
large integers in both time and space. One work around is
to scale down all integers by a constant factor and rounded,
but precision is lost in the process.

The specification of Clafer does not forbid other solvers aside
from Alloy. Having a choice of solvers is healthy for the
Clafer universe since certain solvers have certain relative
strengths. A Clafer model can target a solver that best
suits its characteristics. Since large integers are a big weak-
ness with the current solver2, a new solver should cover this
weakness.

This paper details a Clafer solver using Choco3, a Java li-
brary for constraint programming[5]. A few features of the
library is well suited for the implementation.

Sets: The library supports variables over sets of integers.
In Clafer, almost everything is a set, so set support is
vital to a good encoding.

Integers: Integer variables can have large bounds without
draining performance in many situations.

Objective:4 Choco can solve optimization problems by ei-
ther minimizing or maximizing an objective variable,
hence useful for finding optimal attributed feature mod-
els. Unfortunately, it does not support optimizing mul-
tiple variables natively, although this can be remedied

2My rule of thumb is that a bit-width of 11 (ie. range of [-
1024, 1023]) is large for Alloy but still manageable for simple
models. A bit-width of 14 (ie. range of [-8192, 8192]) is when
it becomes a challenge. Even near-trivial models will take a
few minutes to solve. Larger models will run out of memory.
3Choco project’s homepage: http://www.emn.fr/z-
info/choco-solver/
4Moolloy implements the guided improvement algorithm for
Alloy.

by a manual implementation of the guided improve-
ment algorithm.

Custom constraints and operators: Choco can handle
custom constraints and operators. Some of the Clafer
semantics might not translate efficiently to the current
set of supported constraints and operators, so custom
ones may be needed for performance purposes.

3. IMPLEMENTATION
The paper is example driven, where at each step, it will show
an example model plus the details of the encoding. Given
a model, the solver must enumerate all valid instances up
to the scope or claim unsatisfiability. For the remainder
of the paper, the scopes are given as part of the input in
the comments5. Some examples will set the scope higher
than necessary purely for demonstration. To keep the details
concise, the following notation is employed.

Z = {...,−2,−1, 0, 1, 2, ...}
Zm,n = {m,m + 1,m + 2, ..., n}

P = {0, 1, 2, ...}
Pn = {0, 1, 2, ..., n}

Pm,n = Zm,n where m,n ≥ 0

Names of set variables will be written in bold and names
of integer variables will be written in italics. Here are some
examples using the notation.

Define a set variable “mySet” that is a subset of
{0, 1, 2, 3}.

mySet ⊆ P3

Assign the set to an exact value.

mySet = {1, 3}

Two vertical bars retrieve the size of the set.

|{1, 3}| = 2

Define an integer variable“myInteger”that is an element
of {0, 1, 2, 3}.

myInteger ∈ P3

Assign the set to an exact value.

myInteger = 2

Define an array of 5 integer variables that are elements
of {0, 1, 2, 3}.

myIntegerArray ∈ P5
3

5Clafer comments are prefixed by two slashes “//” like in
Java or C.

This paper will go over how the Clafer structure is imple-
mented along with the important expressions. It will not
cover all expressions, there are simply too many for the scope
of this paper.

3.1 Hierarchy
The hierarchy structure is pervasive in Clafer models and it
needs to be captured in the encoding to Choco. Listing 7
is a small model with Car as the parent and Wheel as the
child.

Listing 7: Simple model
// Scope (Car) = 3 , Scope (Wheel) = 9
Car

Wheel 4 . . 8

Remember, clafers are sets. The solver needs two set vari-
ables for the two clafers.

Car ⊆ P2

Wheel ⊆ P8

Since the scope of Car is 3, the solution can have up to 3
cars.6 Cari is in the solution if and only if i ∈ Car. For
example, if Car = {2} then the solution contains Car2.

Each Car is the parent to a set of Wheel and this is encoded
with an additional set per possible Car.

Car0Wheel,Car1Wheel,Car2Wheel ⊆ P8

Wheel =

2⋃
i=0

CariWheel

(

2⋂
i=0

CariWheel) = ∅

CariWheel denote the children of Cari. For example, if
Car1Wheel = {2, 4, 5, 7}, then Wheel2, Wheel4, Wheel5,
and Wheel7 must lie directly under Car1 in the solution.
The two last constraints state that Wheel is partitioned
by CariWheel because every Wheel must belong to exactly
one Car. However, these child sets are constrained by the
cardinality.

2∧
i=0

(i ∈ Car =⇒ 4 ≤ |CariWheel| ≤ 8)

2∧
i=0

(i 6∈ Car =⇒ |CariWheel| = 0)

6Intuitively, every solution has exactly one car so the scope
given is higher than necessary. Choco will come to the same
conclusion during solving.

3.1.1 Root
Top level clafers are special in the hierarchy because they
are the only clafers to not have parents. A Clafer model can
have many top level clafers and they are all treated differ-
ently from non-top level clafers. To minimize the number of
special cases, the compiler adds a new clafer called Root as
the new highest level clafer. Listing 8 is how the model is
represented internally in the compiler.

Listing 8: Simple desugared model
// Scope (Root) = 1
// Scope (Car) = 3 , Scope (Wheel) = 9
Root 1 . . 1

Car 1 . . 1
Wheel 4 . . 8

Since Car is now a child, the rules in the previous section
apply to it.

Root ⊆ P0

Car ⊆ P2

Root0Car ⊆ P3

Car =

0⋃
i=0

RootiCar

(

0⋂
i=0

RootiCar) = ∅

0∧
i=0

(i ∈ Root =⇒ 1 ≤ |RootiCar| ≤ 1)

0∧
i=0

(i 6∈ Root =⇒ |RootiCar| = 0)

Add one constraint for the special top level clafer Root.

Root = {0}

The original simple model is now encoded in Choco. The
following is an example a solution Choco will return.

Root = {0}
Root0Car = {0}

Car = {0}
Car0Wheel = {0, 1, 2, 3}

Car1Wheel = ∅
Car2Wheel = ∅
Car3Wheel = ∅

Wheel = {0, 1, 2, 3}

The solution maps to the instance in Listing 9.

Listing 9: Simple desugared instance
Root0

Car0
Wheel0
Wheel1
Wheel2
Wheel3

3.2 Joining with children
Suppose the model allowed more than one car and there
exists a hypothetical expression named “FastCar” that eval-
uates to {1, 2}, hence Car1 and Car2 are fast cars. How can
we retrieve the wheels belonging to the fast cars, ie. com-
pute the join expression FastCar.Wheel? Mathematically,
the join is computed like the following.

⋃
i∈FastCar

CariWheel

The issue is that Choco does not support iterating over sets
in such a manner. The straightforward solution is to test for
each element individually. Note that FastCar ⊆ Car ⊆ P2.

2⋃
i=0

(if i ∈ FastCar then CariWheel else ∅)

The above equation7 is more or less how joining with chil-
dren is implemented. It tests all possible Car clafers, and
checks to see if they are part of FastCar. Many other Clafer
expressions also work with sets and often times can be im-
plemented with the same strategy of testing all the possible
values in the set.

3.2.1 Working with large bounds
The strategy in the previous example worked because the
domain of the elements in FastCar is small. Every possible
element is in P2, so it is cheap to test for each one because
|P2| is small. Elements with large domains, such as integers,
do not work well with this strategy. Remember, one of the
goals of the solver is to support large integers. If the inte-
gers have a bound of [-1000000,1000000], then testing each
possible integer in this range is not feasible. This is not a
problem for joins since joins cannot be from integers. How-
ever, we still need a strategy for dealing with sets of integers,
or sets of other large domain elements.

The following strategy requires some static analysis from
the compiler. Every set has a size. If the compiler can prove
bounds on the size of a set, then it is possible to retrieve
the elements as integer variables to work on. For example,
if |FastCar| = 2:

7The if-then-else is an expression like in functional lan-
guages, or the ternary operator in Java.

elements ∈ P2
2

allDifferent(elements) ∧ (

1∧
i=0

elements[i] ∈ FastCar)

FastCar.Wheel =

1⋃
i=0

Carelements[i]Wheel

Sometimes the exact size of an expression cannot be deter-
mined at compile time. In general, the compiler can deter-
mine the lower bound and upper bound of the size of an
expression because Clafers and primitives are bounded by
scopes. For example, suppose the analysis can determine
that |FastCar| is between 1 and 2. Then the implementa-
tion checks with a series of implications and conjunctions
whether the size is indeed 1 or 2 and does the appropriate
operations given the size.

This second approach only makes sense if the difference
between provable lower and upper bounds of |FastCar| is
small. In the case for sets of Clafer integers, the difference
is significantly smaller than the domain of integers.

3.3 Parent
Joins are normally used to traverse down from parents to
children. Clafer allows traversing in the reverse direction.
For example, the expression Wheel.parent will take the set
of wheels, then navigate to their parent clafers. To imple-
ment parent joins, parent “pointers” are stored in an array
of integer variables. The examples in this section describe
how to implement parent pointers between Wheel and Car,
but the rules also apply to Car and Root.

WheelParent ∈ P9
2

The WheelParent array stores the id of the wheel’s parents.
j = WheelParent[i] means that Wheeli is under Carj. How
does Choco keep the parent pointers consistent with the rest
of the model? With the “inverseSet” constraint. The defini-
tion below is taken from the official documentation.8

inverseSet(〈x0, .., xn〉, 〈y0, ..,ym〉) states that xi has value
j if and only if yj contains value i:

xi = j ⇐⇒ i ∈ yj, ∀i = 0...n, j = 0...m

Note that by the definition, the sets y1, ..,ym must fully
partition the set Pn The constraint is applied like the fol-
lowing.

CarunusedWheel ⊆ P2

inverseSet(WheelParent,〈Car0Wheel,Car1Wheel,

Car2Wheel,CarunusedWheel〉)
8There are a few mistakes in the official documentation’s
definition. The definition here corrects those mistakes.

The list of sets in the second argument must fully parti-
tion P8, hence CarunusedWheel is required to hold all the
wheels that do not appear in Car0Wheel, Car1Wheel, nor
Car2Wheel. For example, in Listing 9, WheelParent =
〈0, 0, 0, 0, 3, 3, 3, 3, 3〉 where 3 means that it is not used in the
solution. Also note the constraint (

⋂2
i=0 CariWheel) = ∅

introduced early on is not needed anymore since the invers-
eSet constraint enforces a partition and hence are disjoint.

Mathematically, joining on parents looks like the following
equation, although the implementation is more complicated.
Suppose the expression is MyWheels.parent.

MyWheels.parent = {WheelParent[i] | i ∈MyWheels}

3.3.1 Isomorphism
Aside from joining with parents, the parent pointers have
other uses, the most important one is to break symmetry.
Intuitively, Listing 8 has exactly 5 solutions: 1 Car with
either 4, 5, 6, 7, or 8 wheels. With the current translation,
Choco returns 1143 solutions for that model. Here is an
example of one solution from the 1143.

Listing 10: Simple isomorphic instance
Root0

Car0
Wheel0
Wheel2
Wheel3
Wheel4

Choco is returning isomorphic instances. Even a simple
model like Listing 8 has too many isomorphic solutions. In
this case, every solution has on average over 200 solutions
isomorphic to it. Reducing isomorphic instances is impor-
tant for at least two reasons. Firstly, it hurts the perfor-
mance of the solver. Secondly, isomorphic solutions are use-
less to a human modeller. It is a waste of time to read the
same solution more than once.

The solution is to add a constraint to force the parent pointer
arrays to be sorted. For example, the parent pointer for
Wheel in Listing 10 is WheelParent = 〈0, 3, 0, 0, 0, 3, 3, 3, 3〉,
so the new constraint disallows this case. In fact, for any
instance where Car0 has 4 Wheel, the first 4 values in the
parent pointer array WheelParent must be 0. Listing 9
is valid since WheelParent = 〈0, 0, 0, 0, 3, 3, 3, 3, 3〉 in this
case.

isSorted(WheelParent)

isSorted(CarParent)

These constraints force an ordering on how parents choose
children. The lowest index parent must choose the children
with the lowest indices. The next lowest index parent must
choose the children with the next lowest indices. With the
new constraints, Choco only returns 5 solutions as expected,
eliminating the other 1138 isomorphic solutions.

3.4 Inheritance
There are several ways to encode abstract clafers into Choco.
The best way is to encode them the same as all the other
clafers, the uniformity simplifies the implementation of ex-
pressions.

Listing 11: Simple feature model
// Scope (Root) = 1 , Scope (Car) = 3 ,
// Scope (Gastank) = 2 , Scope (Wheel) = 9
// Scope (Feature) = 11 , Scope (Cost) = 13
abs t r a c t Feature

Cost
Root

Car
Gastank : Feature ?
Wheel : Feature 4 . . 8

In Listing 11, Feature is compiled using the previous rules.
Abstract clafers are also a top level clafer like the Root.

Feature ⊆ P10

Feature0Cost ⊆ P12

Feature1Cost ⊆ P12

...

Feature10Cost ⊆ P12

FeatureunusedCost ⊆ P12

Cost ⊆ P12

Cost =

12⋃
i=0

FeatureiCost

CostParent ∈ P10
12

inverseSet(CostParent, 〈Feature0Cost,

Feature1Cost,

...,

Feature10Cost,

FeatureunusedCost〉)
isSorted(CostParent)

Suppose the expression FreeFeature evaluates to a set of
Feature, then the expression FreeFeature.Cost is compiled
using the rules in section 3.2. However, if FreeWheel is a
set of Wheel, the the expression FreeWheel.Cost cannot
be compiled the same way because Cost is a direct child of
Feature, not Wheel.

Feature is abstract and cannot be instantiated without a
concrete subclafer. The model has exactly two subclafers
that partition Feature. Every Feature is represented twice
in the model, once as its concrete type, and another as its
abstract type. Suppose the correspondence is as follows.

Gastank0 = Feature0

Gastank1 = Feature1

Wheel0 = Feature2

Wheel1 = Feature3

...

Wheel8 = Feature10

Gastank reserves P0,1 on Feature, and Wheel reserves P2,10.
There cannot be any “holes” in the reservation, ie. Gas-

tank cannot reserve {1, 3}. The assignment is somewhat
arbitrary, Wheel could occupy the lower indices of Feature,
instead of Gastank. The relationship is reified with con-
straints.

∧
i∈P0,1

i ∈ Gastank ⇐⇒ i ∈ Feature

∧
i∈P0,8

i ∈Wheel ⇐⇒ i + 2 ∈ Feature

Before performing the join in FreeWheel.Cost, the set of
Wheel needs to be converted to a set of Feature by upcasting
the subexpression FreeWheel. This is accomplished by off-
setting the numbers in FreeWheel by 2. For example, sup-
pose FreeWheel = {3, 5}, ie. Wheel3 and Wheel5 are free.
The solver converts this to a set called FreeWheelFeature =
{5, 7}, ie. a set containing Feature5 and Feature7. Note
that the two expressions, FreeWheel and FreeWheelFeature,
refer to the same clafers. The join FreeWheel.Cost is then
replaced by FreeWheelFeature.Cost.

3.5 Reference
A reference can either point to another clafer or a primi-
tive. This section will cover the implementation of referenc-
ing to integers, but references to clafers are almost identical
in implementation. For the sake of simplicity, assume that
integers are bounded between [-99, 99] in this section. In
general, the bounds can be much larger.

Listing 12: Simple attributed feature model
// Scope (Root) = 1 , Scope (Car) = 3 ,
// Scope (Gastank) = 2 , Scope (Wheel) = 9
// Scope (Feature) = 11 , Scope (Cost) = 13
abs t r a c t Feature

Cost −> i n t e g e r
Root

Car
Gastank : Feature ?
Wheel : Feature 4 . . 8

In Listing 12, every Cost points to an integer value. Since
the scope of Cost is 13, the solver needs to reserve 13 inte-
gers.

CostRef ∈ Z13
−99,99

The intuition is that CostRef [0] stores the reference for
Cost0 and so on. Any Cost that does not exist in the so-
lution must have their reference “zeroed” to avoid problems
with generating solutions. For example, if Cost9 does not
exist in the solution and CostRef [9] is not zeroed, then the
solver can add 1 to CostRef [9] and claim it as a new solu-
tion.

12∧
i=0

i 6∈ Cost =⇒ CostRef [i] = 0

Suppose MyCosts is some expression that evaluates to a
subset of Car. Mathematically, the join MyCosts.ref looks
like the following equation, which has an uncanny resem-
blance to joining on parents.

MyCosts.ref = {CostRef [i] | i ∈MyCosts}

3.6 Constraints
Constraints in Clafer are nested and only apply if the parent
exists.

Listing 13: Nested constraint
\\ Scope (Car) = 3
abs t r a c t Feature

Cost −> i n t e g e r
Car : Feature

[t h i s . Cost . r e f = 10000]

In Listing 13, the constraint [this.Cost.ref = 10000] only
holds for the cars that exists in the instance. The constraint
is compiled like the following.

2∧
i=0

i ∈ Car =⇒ compileExpression({i}.Cost.ref = 10000)

Note that each instance of “this” in the syntax is replaced
with the singleton set {i}. The function compileExpression
compiles a Clafer expression into the corresponding Choco
expression.

3.7 Tools
The ideas here are implemented in the Clafer compiler writ-
ten in Haskell.9. This new project implements a new back-
end that targets Choco. Given a Clafer model as input, the
backend will output a Javascript file that builds a Choco

9The Clafer compiler is an open source project available
here: https://github.com/gsdlab/clafer. The project is in
the ”choco” branch, it has not been merged into the stable
branch yet.

model when executed. It performs the translation and opti-
mizations detailed in this paper.

The second part of the project is the Choco solver that runs
this Javascript output file10. The solver has two parts. The
first part implements a Javascript library file that imple-
ments joins, expressions, and constraints which the Javascript
output of the Clafer compiler can take advantage of. The
second part is written in Java that initializes Choco, and
prepares a Javascript interpreter before feeding it the library
file and the compiler’s output file. After the Javascript in-
terpreter terminates, the Choco model is ready and solved.
One disadvantage of using a Javascript interpreter is the
overhead that it adds to benchmarks, around half a second
on my computer.

4. OPTIMIZATION
The most important optimization is the symmetry breaking
rule in section 3.3.1. Other optimizations are detailed in this
section.

4.1 Fixed size set
One of the major inefficiencies in the encoding is working
with set variables in during the translation of Clafer con-
straints. Most of the useful operators in Choco only work
with integer variables. Many expressions are implemented
by transferring elements from a set variable to integer vari-
ables, performing some work on the integer variables, then
transferring the result back to a new set variable.

The issue is that Clafer expressions are almost always sets,
hence the prolific use of set variables. However, if the com-
piler can prove that an expression is of a fixed size n, then
it can use an array of n integer variables to represent the set
instead.

Listing 14: Fixed size set model
Person

Age −> i n t e g e r
[t h i s . r e f = 3]

In Listing 14, the constraint is equating two sets: the set
this.ref equals the set {3}. Normally, the encoding will
create sets for all 3 expressions: this, this.ref , and 3. An
optimized encoding will take advantage of the fact that the
expressions are of fixed size, determined at compile time.

[AgeRef [this]] = [3]

The above constraint is significantly more efficient imple-
mentation of the constraint in Listing 14. In fact, it avoids
the use of set variables all together.

10The Choco solver is an open source project available here:
https://github.com/gsdlab/chocosolver. The name is per-
haps misleading. It does not solve general Choco models,
it only solves Clafer Choco models outputted by the Clafer
compiler.

4.2 Reference uniqueness
References in Clafer have a condition not mentioned yet in
this paper. References are unique under a parent.11

Listing 15: Reference model
// Scope (Person) = 2
// Scope (FavouriteNumber) = 8
Person 1 . . ∗

FavouriteNumber −> i n t e g e r 1 . . ∗

In Listing 15, each person cannot have an integer listed twice
under his or her favourite numbers. Two different people
can have the same favourite number though. For example,
the instance in Listing 16 is permitted. However, changing
FavouriteNumber2 = 6 to FavouriteNumber2 = 3 is not al-
lowed because FavouriteNumber0 = 3.

Listing 16: Reference model instance
Person0

FavouriteNumber0 = 3
FavouriteNumber1 = 4
FavouriteNumber2 = 6

Person1
FavouriteNumber3 = 3
FavouriteNumber4 = 4
FavouriteNumber5 = 6

The Alloy encoding will make the constraint explicit in the
model, using expressions within the language. The input
model looks like Listing 15, but internally, the models looks
more like Listing 17 during the translation to Alloy.

Listing 17: Internal reference model
// Scope (Person) = 2
// Scope (FavouriteNumber) = 8
Person 1 . . ∗

FavouriteNumber −> i n t e g e r 1 . . ∗
[a l l d i s j x ; y : t h i s . c2 FavouriteNumber

| x . r e f != y . r e f]

The constraint takes advantage of the all quantifier in the
language. In the Choco encoding, there is a more efficient
way of implementing the uniqueness constraint using the
parent pointer arrays. For example, the parent pointer ar-
ray for FavouriteNumber in the instance in Listing 16 is
FavouriteNumberParent = [0, 0, 0, 1, 1, 1, 2]. For any two
FavouriteNumber under the same parent that is not unused,
their references must be different.

1∧
i=0

7∧
j=0

7∧
k=j+1

(FNP [j] = FNP [k] =⇒ FNR[j] 6= FNR[k])

The abbreviations are FNP ≡ FavouriteNumberParent
and FNR ≡ FavouriteNumberRef . The above constraint
enforces the uniqueness constraint as described.

11Clafer also supports references without this constraint.

4.3 Smaller domains
Listing 18 is identical to an earlier example except the scope
of Wheel has been increased.

Listing 18: Simple model again
// Scope (Car) = 3 , Scope (Wheel) = 18
Car

Wheel 4 . . 8

The encoding produces set variables for the parent-child Car-
Wheel.

Car0Wheel,Car1Wheel,Car2Wheel ⊆ P17

One of the consequences of symmetry breaking in section
3.3.1 is that Car0 has Wheel of lowest indices, than Car1 is
next. The symmetry breaking between Root and Car implies
that a Cari of a higher index cannot exist unless all the Carj
with a lower index exists. For example, Car1 cannot exist if
Car0 does not exist (again, this is a consequence of having
CarParent being sorted). With this in mind, it is possible
to reduce the domains of the set variables declared above.

Car0Wheel ⊆ P7

Car0 can have at most 8 Wheel under it due to cardinal-
ity, and it must pick the ones with the lowest 8 indices,
ie. it cannot have Wheel8 as a child. If Car1 exists than
so does Car0. Car1Wheel must have higher indices than
Car0Wheel. In the best case, Car0 has 4 children: Wheel0,
Wheel1, Wheel2, and Wheel3. The first wheel (if any) under
Car1 must be Wheel4. In the worst case, Car0 has all the
wheels up to Wheel7. In which case, the highest possible
wheel under Car1 is Wheel15.

Car1Wheel ⊆ P4,15

Similar analysis can reduce the domain of Car2Wheel. Note
that the upper limit of the domain is bounded by the scope
of Wheel.

Car2Wheel ⊆ P8,17

Therefore the domains have been decreased in size without
changing the problem. Solvers work more efficiently when
the domains are as small as possible.

5. RESULT
The Clafer structure is why the modelling language stands
out against other modelling languages. Any backend solver
for the language needs to efficiently handle the structure im-
posed by a Clafer model. The first test will test the solver’s
ability to solve structure.

Listing 19: Zoo
abs t r a c t Animal

Head
Eye 2
Ear 2
Mouth

Age −> i n t e g e r
Torso
Leg 4

Feet
Cat : Animal 4

Whiskers 6
Rhino : Animal 3

Horn
Elephant : Animal 2

Trunk

Listing 19 is a contrived example containing hierarchy, ref-
erences, cardinality, and inheritance. It contains no con-
straints in the Clafer model. Intuitively, the model is simple
because it is easy to solve manually by hand. The model is
tested against the two solvers, the existing Alloy solver and
the new Choco solver. The tests are performed on my per-
sonal 6-year-old duo-core laptop. Alloy tests are executed
on Alloy 4.2 with Minisat as the backend SAT solver. The
Alloy analyzer is given 2 gigabytes of memory.

Solver Time to compute first solution
Alloy 15 min
Choco 2 sec

The Alloy solver performs rather poorly. However, the re-
sults are entirely different if the “flatten inheritance” opti-
mization flag is enabled in the Clafer compiler. The flattened
model solves in less than 2 seconds. Inheritance flattening
is an optimization that removes abstract clafers entirely by
copying their children directly under the subclafers. It is a
destructive optimization because flattening the inheritance
technically alters the semantics of the model. Also, the op-
timization is only applicable if certain conditions are met.

The next few tests are Clafer model adaptations of attributed
feature models from Scalable Prediction of Non-functional
Properties in Software Product Lines. The models were
adapted by Rafael Olachea as part of his ClaferMoo project12.
The tests have two criteria, how long did it take to compute
the first solution, and how long did it take to optimum so-
lution. All models have a single objective.

The Alloy ”first” tests measure the time it took to compute
the first solution. These tests are executed with the offi-
cial Alloy 4.2 release. The Alloy “optimum” tests measure
the time it took to compute the optimum solution: either
the solution with the lowest footprint or the solution with
the highest performance. These tests are executed with 3
Alloy extensions: Moolloy, partial instances, and sparse in-
tegers. The Alloy optimum tests are compiled with Clafer-
Moo rather than the standard Clafer compiler. ClaferMoo

12The project plus models are available at GitHub:
https://github.com/gsdlab/claferMooStandalone

is a special compiler for attributed Clafer feature models,
because it is a much better compiler for this subset of prob-
lems. Tests that ran out of memory will be denoted with
“OOM” in the table. These feature models use large inte-
gers.

Linked list feature model

Solver
Time to compute solution

first optimum
Alloy OOM 18 sec
Choco 1.3 sec 4.7 sec

Apache web server feature model

Solver
Time to compute solution

first optimum
Alloy 36 sec 0.4 sec
Choco 1.1 sec 3.6 sec

BerkeleyDB feature model

Solver
Time to compute solution

first optimum
Alloy OOM 1.7 sec
Choco 0.9 sec 2.8 sec

The Alloy optimum column performs extremely well. The
translation of the models for these tests assume the input
models are attributed feature models and take advantage of
that fact. Thus it is optimized for these tests. The Choco
solver does not make any assumptions and the attributed
feature models are compiled like any other model.

The results show that Alloy 4.2 struggles with large inte-
gers. Extensions to Alloy cover its shortcomings, for feature
models anyways. The Choco solver is very competitive, even
against the Alloy solving strategy tailored for these feature
models. Non-feature models with large integers will not per-
form well in Clafer with the Alloy solver.

6. RELATED WORK
Alloy relies on Kodkod as its solver. Kodkod can set lower
bounds to its relation, essentially providing a partial solution
as part of the input[9]. The official Alloy implementation
does not expose this functionality to Alloy models. Recent
work by Montaghami and Rayside expose lower bounds as
“partial instances” and greatly improves the performance of
solving feature models[6]. To take advantage of partial in-
stances, the Clafer compiler would need to partially solve the
model. The current Clafer compiler does not support par-
tial instances, only the ClaferMoo project, which assumes
its inputs are attributed feature models.

As for integers, Alloy and Kodkod rely on bit-blasting. Any
model requiring many large integers will be a problem. An
extension for sparse integers has been developed. Essen-
tially, the extension will only account for an explicit subset
of integers. The idea is that the modeller can specify only

the integers that can appear in the model. The extension is
an attempt to extend Alloy’s effectiveness in the presence of
large integers. The current Clafer compiler does not support
sparse integers, only the ClaferMoo project. Sparse integers
can work very well for attributed feature models. The rea-
son is that all the integer references are assigned as part of
the model. For attributed feature models, sparse integers
cover Alloy’s shortcomings, and perhaps the Choco solver is
redundant for these models. Sparse integers does not always
apply in general.

Listing 20: Unassigned integer
Computer : Feature

Age −> i n t e g e r
[t h i s . r e f >= 0]

. . . r e s t o f the model . . .

Suppose Listing 20 is part of a Clafer model. At the very
best, the Clafer compiler can infer that Age.ref ∈ P. Sparse
integers will need to cover all the positive integers since it is
unknown at compile time the value of Computer.Age.ref .

7. FUTURE WORK
One of the future goals is to build a suite of realistic Clafer
models to properly benchmark the solvers. The only set of
realistic models we have in our collection are the attributed
feature models, hence the experiment largely focuses on this
special subset of Clafer models. Without a proper set of
models, it is hard to evaluate how the Choco solver will
perform outside of feature models.

7.1 Real support
A problem with Choco is that sets are only supported over
integers. Real number expressions in Clafer are always sets.
Section 4.1 explains a strategy to avoid set variables, so it is
possible to implement fixed size sets of real numbers as an
array of real variables. In the future, the Choco solver should
support reals, but limited to fixed size set expressions. This
restriction is quite severe.

Listing 21: Races
BikeRace 2

End −> r e a l
BoatRace 2

Star t −> r e a l
[BikeRace . End . r e f = BoatRace . S ta r t . r e f]

Listing 21 states that the boat races start immediately af-
ter the bike races. The model, although simple, would not
compile because |BikeRace.End.ref | is unknown at compile
time. The set has size of 1 if both end times are the same.
It has size of 2 if the end times are different.

7.2 Custom constraints
Some expressions have less than optimal encodings in Choco.
In the future, the implementation should take advantage
of custom constraints and operators to improve the perfor-
mance of these expressions. The following is a non-exhaustive
list of possible custom constraints/operators.

Join on an array of integers: The signature and defini-
tion of the joia (join on integer array) operator would
look like this:

joia : SetV ariable× [IntegerV ariable]→ SetV ariable

joia(s, is) = {is[i] | i ∈ s}

The new operator can be used to directly implement
both join on parents and join references.

Offset: The signature and definition of the offset operator
would look like this:

offset : SetV ariable× IntegerV ariable→ SetV ariable

offset(s, o) = {i + o | i ∈ s}

The operator is used for upcasting.

Sum set: One consequence of using sets for almost all ex-
pressions is that arithmetic has an unintuitive def-
inition. When performing addition, both operands
are sets of integers. Addition adds the sums of its
operands.

Listing 22: Addition
Vers ion : i n t ∗
[Vers ion . r e f + 2 > 0]

The problem is that V ersion.ref can evaluate to a
non-singleton set. V ersion.ref+2 is essentially rewrit-
ten as sumset(V ersion.ref) + sumset({2}). The cur-
rent sumset implementation can be more efficient as a
custom operator.

Integer array to set: The signature and operator of iats
(integer array to set) would look like this:

iats : [IntegerV ariable]→ SetV ariable

iats([x1, x2, ..., xn]) = {x1, x2, ..., xn}
precondition : allDifferent(x1, x2, ..., xn)

Optimized expressions use fixed size integer arrays as
discussed in section 4.1. If an expression is a vari-
abled size set, but its subexpressions are fixed size set
optimized, then this operator is needed to bridge the
mismatch.

8. CONCLUSION
This paper illustrates the important concepts of the new
Choco backend for our Clafer project. For attributed fea-
ture models, the new implementation is at least as compet-
itive as ClaferMoo, a special Clafer compiler dedicated for
optimizing attributed feature models. The new solver looks
promising as a substitute or replacement of the Alloy solver.
Implementing support for real numbers will make the solver
even more desirable, as Alloy does not provide support for
reals. Future work with custom constraints and operators
may lead to a more efficient solver.

9. REFERENCES
[1] K. Bak. Clafer: a unified language for class and feature

modeling. Technical report, Generative Software
Development Lab, April 2010.

[2] K. Bak. Optimized translation of clafer models to alloy.
Technical report, Generative Software Development
Lab, July 2011.

[3] D. Jackson. Alloy: A lightweight object modelling
notation. ACM Transactions on Software Engineering
and Methodology, 11(2):256–290, April 2002.

[4] D. Jackson, H.-C. Estler, and D. Rayside. The guided
improvement algorithm for exact, general-purpose,
many-objective combinatorial optimization. Technical
Report MIT-CSAIL-TR-2009-033, MIT Computer
Science and Artificial Intelligence Laboratory, July
2009.

[5] N. Jussien, G. Rochart, and X. Lorca. Choco: an open
source java constraint programming library. 2008.

[6] V. Montaghami and D. Rayside. Extending alloy with
partial instances. In Proceedings of the Third
international conference on Abstract State Machines,
Alloy, B, VDM, and Z, ABZ’12, pages 122–135, Berlin,
Heidelberg, 2012. Springer-Verlag.

[7] R. Olaechea, S. Stewart, K. Czarnecki, and D. Rayside.
Modeling and multi-objective optimization of quality
attributes in variability-rich software. In International
Workshop on Non- functional System Properties in
Domain Specific Modeling Languages
(NFPinDSML’12), Innsbruck, Austria, 10/2012 2012.

[8] E. Torlak. A Constraint Solver for Software
Engineering: Finding Models and Cores of Large
Relational Specifications. PhD thesis, Massachusetts
Institute of Technology, February 2009.

[9] E. Torlak and D. Jackson. The design of a relational
engine. Technical report, In Foundations of Software
Engineering, 2006.

