Scotiabank Mortgages in Clafer

Defining the concept of mortgage and its variants using Clafer

Draft v. 3
April 24, 2011

By Michał Antkiewicz
http://gsd.uwaterloo.ca/mantkiew
http://softwarecontinuum.com

Overview
The purpose of this document is to demonstrate how a complex family of concepts can be modeled using Clafer. The document presents an exact record of the actual analysis performed by the author and shows a typical evolution of the concept definitions when using the “concrete-to-abstract” domain analysis approach.

Basic knowledge of Clafer is assumed. Refer to Concept Modeling Using Clafer - Tutorial for a thorough introduction.

Concept: Mortgage

<table>
<thead>
<tr>
<th>Contributor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>Mortgage Centre section of the source</td>
</tr>
<tr>
<td>Creator</td>
<td>Michał Antkiewicz</td>
</tr>
<tr>
<td>Date</td>
<td>As of Apr 19, 2011</td>
</tr>
<tr>
<td>Description</td>
<td>Conceptual model of a family of mortgages offered by Scotiabank</td>
</tr>
<tr>
<td>Format</td>
<td>Clafer</td>
</tr>
<tr>
<td>Language</td>
<td>en</td>
</tr>
<tr>
<td>Rights</td>
<td>Bank of Nova Scotia</td>
</tr>
<tr>
<td>Source</td>
<td>http://www.scotiabank.com/cda/content/0,1608,CID8216_LIDen,00.html</td>
</tr>
<tr>
<td>Subject</td>
<td>Mortgages for individuals</td>
</tr>
</tbody>
</table>

Initial Analysis
This section presents how different variants of mortgages can be written down directly while reading the source. Each concept below represents “notes” taken during the initial read. The intention is to enumerate all variants and their properties as they are presented before abstracting the concepts.

abstract Mortgage

 valueProposition -> string
abstract FixedRate : Mortgage
[valueProposition = “Play it safe by knowing exactly what your mortgage rate and payment will be for the full term.”]

abstract OpenTerm : FixedRate
[valueProposition = “Get fixed payments, the flexibility to pay off your mortgage faster, and the security of locking into another term at any time.”]
open
xor term
 6months ; 1year
interestRate
 fixedForTheFullTerm
xor financingAvailable
 conventional
 insured
xor paymentFrequency
 weekly ; biweekly ; semi-monthly ; monthly
prepaymentOptions
 anyAmountUpToFullAmount
 atAnyTime
 withoutPenalty

abstract Flexible/Closed Mortgage : FixedRate
[valueProposition = “Lock into a competitive rate for 6 months with the option to convert to a longer term without penalty.”]
closed
term
 6months
interestRate
 fixedFor6months -- which is, effectively, the same as fixedForFullTerm
xor financingAvailable
 conventional
 insured
xor paymentFrequency
 weekly ; biweekly ; semi-monthly ; monthly
prepaymentOptions
 prepayUpTo15%OfOriginalAmount
 increasePaymentsByUpTo15%OfCurrentTermPayment

abstract 1,2YearClosedTermMortgages : FixedRate
[valueProposition = “Get the stability of a fixed rate and payment over the short-term at a very competitive rate.”]
closed
xor term
 1year ; 2years
interestRate
 fixedForFullTerm
xor financingAvailable
 conventional
insured
xor paymentFrequency
 weekly ; biweekly ; semi-monthly ; monthly
prepaymentOptions
 prepayUpTo15%OfOriginalAmount
 increasePaymentsByUpTo15%OfCurrentTermPayment

abstract 3,4,5,7YearClosedTermMortgages : FixedRate
 [valueProposition = “Get the stability of a fixed rate and payment over the long-term at a very competitive rate.”]
 closed
term
 3years ; 4years ; 5years ; 7years
interestRate
 fixedForFullTerm
xor financingAvailable
 conventional
 insured
xor paymentFrequency
 weekly ; biweekly ; semi-monthly ; monthly
prepaymentOptions
 prepayUpTo15%OfOriginalAmount
 increasePaymentsByUpTo15%OfCurrentTermPayment
cashBackOption
 cashBackUpTo5%ofMortgagePrincipal
upfront

abstract 5YearClosedTermMortgages : FixedRate
 [valueProposition = “By locking into a longer term mortgage, especially while current interest rates are so low, you can have the security of knowing your payment won’t change.”]
 closed
term
 5years
interestRate
 fixedForFullTerm
xor financingAvailable
 conventional
 insured
xor paymentFrequency
 weekly ; biweekly ; semi-monthly ; monthly
prepaymentOptions
 prepayUpTo15%OfOriginalAmount
 increasePaymentsByUpTo15%OfCurrentTermPayment
cashBackOption
 cashBackUpTo5%ofMortgagePrincipal
upfront

abstract 10YearClosedTermMortgages : FixedRate
 [valueProposition = “A competitive low rate and payment that are guaranteed for 10 years.”]
 closed
term
 10years
Consider a variable rate mortgage. Where the rate you pay fluctuates with Scotiabank Prime Rate.

Take advantage of a mortgage with a low rate and low payment.

Flexibility means greater mortgage value: you get a low rate and low payments, and a guaranteed rate discount when you lock into Scotiabank’s 5-year fixed rate.
These definitions can now be used to instantiate a mortgage for a client. For example

Example Mortgage: *ScotiaFlexValueMortgageOpenTerm*

- conventional
- weekly

Note, that only two parameters needed to be specified as all other parameters are predetermined by the used mortgage variant (actually, other parameters such as principal amount are missing. We’ll add them in the Section Context Analysis.

Abstraction by commonality extraction

As can be easily seen, the variants listed in the previous section share many common properties: financingAvailable and paymentFrequency repeat in each variant and can be easily moved to the main concept Mortgage. Doing so allows us to remove these properties from each variant.

```plaintext
abstract Mortgage
    valueProposition -> string
    xor financingAvailable
    conventional
    insured
    xor paymentFrequency
    weekly ; biweekly ; semi-monthly ; monthly
```

Additionally, it can be seen that there is a fixed set of available term options that can be modeled as an enumeration:

```plaintext
enum MortgageTerm = 6months | 1year | 2years | 3years | 5years | 7years | 10years
```

Now we can say that every mortgage has a term that can be (in general) chosen from these values as follows:

```plaintext
abstract Mortgage
    ...
    term -> MortgageTerm
    ...
```

Also, every mortgage can be open or closed.

```plaintext
abstract Mortgage
    ...
    xor kind
    open
    -- this name does not come from the source. Need to confirm this abstract term with an SME.
```
We observe that interestRate is the same among all variants of FixedRate mortgage with one exception: the variant Flexible/ClosedMortgage has interestRate.fixedFor6months. However, since the term for this variant is 6months, we can consider the interest rate to be fixedForFullTerm as well.

abstract FixedRate : Mortgage
 interestRate
 fixedForTheFullTerm

We observe the following commonalities among all variants of VariableRate mortgage:

- addedBenefits are the same
- interestRate is the same
- [term = 5years]

These commonalities can be moved to the definition of VariableRate as follows:

abstract VariableRate : Mortgage
 [term = 5years]
 interestRate
 resetTogetherWithPaymentAmountEachTimeScotiabankPrimeRateChanges
 addedBenefits
 convertAnytimeToFixedTermProductWithTermGreaterThanTheRemainingTerm
 withoutPenalty

After applying these modifications, the entire set of definitions is as follows:

enum MortgageTerm = 6months | 1year | 2years | 3years | 5years | 7years | 10years

abstract Mortgage
 valueProposition -> string
 term -> MortgageTerm
 xor kind
 open
 closed
 xor financingAvailable
 conventional
 insured
 xor paymentFrequency
 weekly ; biweekly ; semi-monthly ; monthly

abstract FixedRate : Mortgage
 [valueProposition = “Play it safe by knowing exactly what your mortgage rate and payment will be for the full term.”]
 interestRate
 fixedForTheFullTerm
abstract OpenTerm : FixedRate
[valueProposition = “Get fixed payments, the flexibility to pay off your mortgage faster, and the security of locking into another term at any time.”
 open
term in 6months + 1year]
prepaymentOptions
 anyAmountUpToFullAmount
 atAnyTime
 withoutPenalty

abstract Flexible/Closed Mortgage : FixedRate
[valueProposition = “Lock into a competitive rate for 6 months with the option to convert to a longer term without penalty.”
 closed
term = 6months]
prepaymentOptions
 prepayUpTo15%OfOriginalAmount
 increasePaymentsByUpTo15%OfCurrentTermPayment

abstract 1,2YearClosedTermMortgages : FixedRate
[valueProposition = “Get the stability of a fixed rate and payment over the short-term at a very competitive rate.”
 closed
term in 1year + 2years]
prepaymentOptions
 prepayUpTo15%OfOriginalAmount
 increasePaymentsByUpTo15%OfCurrentTermPayment

cashBackOption
cashBackUpTo5%ofMortgagePrincipal
 upfront

abstract 3,4,5,7YearClosedTermMortgages : FixedRate
[valueProposition = “Get the stability of a fixed rate and payment over the long-term at a very competitive rate.”
 closed
term in 3years + 4years + 5years + 7years]
prepaymentOptions
 prepayUpTo15%OfOriginalAmount
 increasePaymentsByUpTo15%OfCurrentTermPayment

cashBackOption
cashBackUpTo5%ofMortgagePrincipal
 upfront

abstract 5YearClosedTermMortgages : FixedRate
[valueProposition = “By locking into a longer term mortgage, especially while current interest rates are so low, you can have the security of knowing your payment won't change.”
 closed
term = 5years]
prepaymentOptions
 prepayUpTo15%OfOriginalAmount
 increasePaymentsByUpTo15%OfCurrentTermPayment

abstract 10YearClosedTermMortgages : FixedRate
[valueProposition = “A competitive low rate and payment that are guaranteed for 10 years.”]
At this point, we clearly see that all fixed rate mortgages have interest rate fixedForTheFullTerm and all variable rate ones have resetTogetherWithPaymentAmountEachTimeScotiabankPrimeRateChanges. We can make this choice explicit and move interestRate to Mortgage.
conventional insured
xor paymentFrequency
 weekly ; biweekly ; semi-monthly ; monthly

abstract FixedRate : Mortgage
 [valueProposition = “Play it safe by knowing exactly what your mortgage rate and payment will be for the full term.”]
 fixedForTheFullTerm

abstract VariableRate : Mortgage
 [valueProposition = [“Consider a variable rate mortgage. Where the rate you pay fluctuates with Scotiabank Prime Rate.”]
 term = 5years
 resetTogetherWithPaymentAmountEachTimeScotiabankPrimeRateChanges]
 addedBenefits
 convertAnytimeToFixedTermProductWithTermGreaterThanTheRemainingTerm
 withoutPenalty

All other definitions remain unchanged.

With that we can conclude conceptual analysis of the concept mortgage and its fixed and variable rate variants. At this point, we have a clear understanding of the common properties of every mortgage, distinguishing properties of fixed and variable rate variants, and a clear understanding of the particular distinguishing characteristics each concrete variant brings. Enriched with this understanding, we can proceed with a deeper analysis of the domain.

Context Analysis

The definitions we obtained so far originate from the web site, which is meant to highlight main characteristics of the different mortgage variants from the marketing point of view. There are, however, other essential properties of mortgage that were not mentioned so far. To further enrich our definitions, we examine Mortgage Comparison Calculator.

We discover mortgageAmount, interestRate, amortization, and payment. The mortgageAmount must be between 5000$ and 9,999,999$, the interestRate must be between 0.5% and 25% and amortization between 1 and 30 years. We add these properties to the definition of Mortgage as follows. We however rename interestRate and payment to currentInterestRate and currentPayment as these values change over time.

abstract Mortgage
 valueProposition -> string
 term -> MortgageTerm
 xor kind
 open
 closed
 mortgageAmount -> Currency
 [5000 <= mortgageAmount <= 9999999]
 amortization -> integer
[1 <= amortization <= 30]
xor interestRate
 fixedForTheFullTerm
 resetTogetherWithPaymentAmountEachTimeScotiabankPrimeRateChanges
currentInterestRate -> Percentage
[0.5 <= currentInterestRate <= 25]
currentPayment -> Currency
xor paymentFrequency
 weekly ; biweekly ; semi-monthly ; monthly
xor financingAvailable
 conventional
 insured

Given the following definitions of Currency and Percentage:

abstract Currency extends float

abstract Percentage extends float
[val >= 0 && val <= 100]

Now we examine a payment chart. We discover two more properties: principal and balance. The principal refers to the initial mortgage amount and balance refers to the outstanding mortgage amount which changes over time. We modify the definition by changing mortgageAmount to principalMortgageAmount and we add balance as balance.

abstract Mortgage
...
 principalMortgageAmount -> Currency
[5000 <= principalMortgageAmount <= 9999999]
 balance -> Currency
[balance <= principalMortgageAmount]
...

At this point, our definition covers both product information and mortgage comparison calculator contexts. A brief analysis of other on-line tools, such as, Build Your Mortgage Plan, What Can I Afford, Mortgage Payment Calculator, and Mortgage Selector, reveals that our definitions are adequate to these contexts as well.

In general, the definitions need to be revised and adapted to all relevant contexts to increase their usefulness and value.

Let us now create an example instance of the extended Mortgage concept:

ExampleMortgage : Mortgage
[term = 7years
 closed
 mortgageAmount = 234000
 amortization = 15

resetTogetherWithPaymentAmountEachTimeScotiabankPrimeRateChanges

currentInterestRate = 2.5
weekly
conventional]

Special Programs

Having defined the basic types of mortgages, we proceed to analyze additional variants of mortgages presented in Special Programs section of the source.

The Save Now, Save Later mortgage is a closed fixed rate mortgage with a 1 year term and an optional renewal term for 5 years. It has an interest rate discount for the initial term (1.66%) and one for the optional renewal term (1.25%).

abstract SaveNow,SaveLaterMortgage : FixedRate

[valueProposition = “Save now with a competitive mortgage rate and save later with a guaranteed rate discount. Limited time offer.”

closed
term = 1year]
optionalRenewalTerm -> MortgageTerm = 5years
initialInterestRateDiscount -> Percentage = 1.66
renewalInterestRateDiscount -> Percentage = 1.25
prepaymentOptions
prepayUpTo15%OfOriginalAmount
increasePaymentsByUpTo15%OfCurrentTermPayment
addedBenefits
renewTo5-year,FixedRate,ClosedTerm
noEarlyRenewalInterest
noEarlyPrepaymentPenalties

At this point, we see that this variant reuses the commonly used “15%” prepayment options. We may want to factor out these and the other commonly used prepayment options, so that they can be referenced rather than duplicated in each definition.

abstract 15%Prepayment15%Increase

prepayUpTo15%OfOriginalAmount
increasePaymentsByUpTo15%OfCurrentTermPayment

abstract anyAmountAnytime

anyAmountUpToFullAmount
atAnyTime
withoutPenalty

With that, these prepayment options became independent concepts and they can now be used as follows (all other definitions need to be updated accordingly):

abstract SaveNow,SaveLaterMortgage : FixedRate

...
The Long and Short Mortgage is actually a mortgage composed of a fixed-rate, closed-term mortgage for a part of the principal and the Scotia Flex Value variable-rate mortgage for the rest of the principal. For illustrative purposes (not confirmed with an SME), we assume that both mortgages need to have the same kind of financing and payment frequency as the main mortgage.

The Secondary Home Financing Program is designed for all types of Secondary Homes, including Type A and Type B vacation properties.

abstract SecondaryHomeFinancingProgram : Mortgage
[valueProposition = “If you’re looking for a getaway or a second home to call your own, consider your many financing options.”]

abstract ScotiaMortgageForSelfemployed : Mortgage
[valueProposition = “Are you self-employed and looking to buy a home? See how much easier it can be.”]
conditions
[loanToValue <= 90
 75 <= loanToValue <= 90 <=> insured]

The last two definitions additionally contain conditions which constrain the loanToValue ratio and specify when the mortgage has to be insured. We now have to add the loanToValue property to the definition of Mortgage. Since, loanToValue is a ratio between balance and propertyValue, we need to add the latter and constrain dependencies among the three values.

abstract Mortgage
...
 propertyValue -> Currency
 loanToValue -> Percentage
 [loanToValue = balance / propertyValue]
...

The StartRight mortgage program can be configured as open/closed, fixed/variable, and with any term. It has a stricter requirement for insurance for temporary residents (from 65% loanToValue) as compared to 75% for permanent residents. Minimum 5% downpayment is required.

abstract ScotiabankStartRightMortgageProgramForTemporaryResidents : Mortgage
 [valueProposition = "We can help you feel at home faster if you are working and living in Canada temporarily."]
 prepaymentOptions -> 15%Prepayment15%Increase
 conditions
 [loanToValue <= 95
 65 <= loanToValue <= 95 <=> insured]

abstract ScotiabankStartRightMortgageProgramForPermanentResidents : Mortgage
 [valueProposition = "A specially designed program to meet your mortgage needs and help you in obtaining your first home in Canada."]
 prepaymentOptions -> 15%Prepayment15%Increase
 conditions
 [loanToValue <= 95
 75 <= loanToValue <= 95 <=> insured]

Since the two programs only differ in the lower bound of loanToValue, they can be collapsed into a single definition as follows:

abstract ScotiabankStartRightMortgageProgram : Mortgage
 xor residentType
 temporary
 [valueProposition = "We can help you feel at home faster if you are working and living in Canada temporarily."]
 permanent
 [valueProposition = "A specially designed program to meet your mortgage needs and help you in obtaining your first home in Canada."]
 prepaymentOptions -> 15%Prepayment15%Increase
 conditions
It can now be clearly seen that the program is designed for only temporary and permanent residents, both the value proposition and the lower bound for insurance requirement depend on the resident type. All other properties are inherited from the concept Mortgage.

At this point, we have modeled all fixed and variable rate mortgages as well as all special program mortgages.

Scotia Total Equity Plan

It is a plan that can be custom built for the particular needs and circumstances of the borrower. It is not a mortgage itself but it can combine a variety of other borrowing programs to borrow for up to 80% of the value of client’s property (that is *home equity*).

```plaintext
abstract ScotiaTotalEquityPlan
  borrowingLimit -> Currency
  establishedWithaSingleApplication
  currentMortgage -> Mortgage  -- requires an existing mortgage
  [ borrowingLimit = currentMortgage.principalMortgageAmount - currentMortgage.balance ]
  homeEquity -> Percentage
  [ homeEquity >= 20
    homeEquity = currentMortgage.balance * 100 / currentMortgage.principalMortgageAmount ]
  -- choose any combination of products
  ‘FixedRate *
  ‘VariableRate *
  ‘LongAndShortMortgage *
  ‘ScotiaLinePersonalLineofCredit ?
  ‘CreditLineForBusiness *
  ‘ScotiaLineForBusinessVISACard *
  ‘ScotiaGoldPassportForBusinessVISACard *
  ‘ScotiabankVisaCard *
  ‘ScotiabankPlanPersonalLoans *
  ‘TermLoanForBusiness *
  ‘OverdraftProtection ?
```

Such a definition makes it explicit that

1. An existing mortgage with Scotiabank is required
2. Limit of home equity and how to calculate it
3. Borrowing limit and how to calculate it
4. List of products that can be instantiated as part of the plan and valid numbers of instances (e.g., a client may have any number of fixed rate mortgages but only at most one overdraft protection). The list assumes that all products were already defined.

Interestingly, the above definition is what the author has understood from reading the *Overview* and *How it works*? tabs of the source only. Crosschecking the definition with the example presented in *Meet
the Wongs tab revealed critical mistakes (and precisely illustrates the power of “specification by example” and “concrete to abstract” modeling approaches)!

Actually, the borrowing limit is established on the basis of the appraised home value. The correct definition is as follows:

abstract ScotiaTotalEquityPlan
 borrowingLimit -> Currency -- calculated
 establishedWithASingleApplication
 appraisedPropertyValue -> Currency -- provided in application
 [borrowingLimit = 0.80 \times appraisedPropertyValue]
 currentMortgageBalance -> Currency -- provided in application
 homeEquity -> Percentage -- calculated
 [homeEquity >= 20
 homeEquity = currentMortgageBalance \times 100 / appraisedPropertyValue]
 -- choose any combination of products
 'FixedRate *
 'VariableRate *
 'LongAndShortMortgage *
 'ScotiaLinePersonalLineofCredit *
 'CreditLineForBusiness *
 'ScotiaLineForBusinessVISACard *
 'ScotiaGoldPassportForBusinessVISACard *
 'ScotiabankVisaCard *
 'ScotiaPlanPersonalLoans *
 'TermLoanForBusiness *
 'OverdraftProtection ?
 [(sum FixedRate.balance + sum VariableRate.balance + sum LongAndShortMortgage.balance + sum ScotiaLinePersonalLineofCredit.balance + sum CreditLineForBusiness.balance + sum ScotiaLineForBusinessVISACard.balance + sum ScotiaGoldPassportForBusinessVISACard.balance + sum ScotiabankVisaCard.balance + sum ScotiaPlanPersonalLoans.balance + sum TermLoanForBusiness.balance + OverdraftProtection.balance) <= borrowingLimit] -- the grand total of all balances must be less or equal to the borrowing limit

Any existing products can be transferred to the total equity plan in which case they are reinstated within the plan.

Given this definition of the total equity plan and assuming existing definitions of other products, such as lines of credit and visa cards, we can express the Wong example as an instance of the total equity plan as follows:
theWongsEquityPlan : ScotiaTotalEquityPlan
 [appraisedPropertyValue = 240000
 currentMortgageBalance = 85000]
-- the calculated borrowingLimit is 192000
-- the minimum 20% home equity requirement is satisfied
-- the example does not specify exactly which mortgage the Wongs have. Let’s assume a variable rate ‘ScotiaFlexValueMortgageOpenTerm
 [balance = 85000]
‘ScotiaLinePersonalLineofCredit
 [principalAmount = 35000
 balance = 25000]
‘ScotiaLinePersonalLineofCredit
 [principalAmount = 25000
 balance = 5000]
‘ScotiaPlanPersonalLoan
 [principalAmount = 25000
 balance = 25000]
‘ScotiabankVisaCard
 [creditLimit = 10000
 balance = 3150]

Finally, another possible way to define the total equity plan would be to simply link to existing products using ->, for example:

abstract ScotiaTotalEquityPlan
 ...
 fixedRateMortgages -> FixedRate *
 ...

In this case, each product would need to be configured to be part of the total equity plan, for example,

WongsFixedMortgage : 5YearClosedTermMortgages
 ...
 [partOfTotalEquityPlan = theWongsEquityPlan]
 ...

theWongsEquityPlan : ScotiaTotalEquityPlan
 ...
 [WongsFixedMortgage in fixedRateMortgages]

Further possibilities
The definitions can further be extended with terms and conditions (missing for fixed and variable rate mortgages), additional business rules not present in the source or missed by the author, current interest rates and different calculations such as current payment and actual amortization, and the lifecycle of the mortgages (e.g., LongAndShortMortgage has an interesting lifecycle where the borrower may choose to extend for a 5year term after the initial 1year term has matured. Upon such extension, a different interest rate becomes used in calculations etc.).
Lifecycle modeling presents an interesting challenge. First, the states which the mortgage may be in and transitions between these states must be identified. Next, the states may impact other properties and validity of some constraints of the mortgage. Let’s briefly sketch the idea by assuming that a regular mortgage can be in the following states: appliedFor, active, cancelled, and matured. The only valid sequences of transitions are: appliedFor->active->cancelled (cancelled during term), appliedFor-> cancelled (never approved), and appliedFor->active->matured (ran full term).

abstract Mortgage
xor states
 appliedFor -- initial state
 active
 cancelled
 matured
[appliedFor ---> active -- these are the only valid transitions
 appliedFor ---> cancelled
 active ---> cancelled
 active ---> matured]

Lifecycle modeling is currently a proposed extension of Clafer and it is not implemented.

Summary and Conclusion
In this document, we presented an exact record of the analysis performed by the author and the way Clafer can be used for “concrete to abstract” modeling. The final set of definitions is presented in the Appendix.

Such definitions can be used in many ways, including:

- Precise communication among all stakeholders including business analysts, developers, testers.
- Exploring all possible examples of concepts using interactive concept instantiation or automatic instance generation (tool support required). Such exploration enables systematic elicitation of concept constraints (i.e., overconstrained concept will not allow correct instances, and underconstrained concept will allow incorrect instances).
- Validation of the concept with business stakeholders using both examples (instances) and the abstraction.
- Applying domain-driven design (DDD). For example, Clafer naturally supports aggregates with property nesting and '. Exploring using Clafer for DDD is future work.
Appendix – Final and Complete Set of Definitions

Please note that the entire set of definitions that covers all products from the source is represented only in less than five pages.

-- most general concept: Mortgage

abstract Mortgage
 valueProposition -> string
 term -> MortgageTerm
 xor kind
 open
 closed

 principalMortgageAmount -> Currency
 [5000 <= principalMortgageAmount <= 9999999]
 balance -> Currency
 [balance <= principalMortgageAmount]
 propertyValue -> Currency
 loanToValue -> Percentage
 [loanToValue = balance /propertyValue]
 amortization -> integer
 [1 <= amortization <= 30]
 xor interestRate
 fixedForTheFullTerm
 resetTogetherWithPaymentAmountEachTimeScotiabankPrimeRateChanges
 currentInterestRate -> Percentage
 [0.5 <= currentInterestRate <= 25]

 currentPayment -> Currency
 xor paymentFrequency
 weekly ; biweekly ; semi-monthly ; monthly
 xor financingAvailable
 conventional
 insured

-- prepayment options

abstract 15%Prepayment15%Increase
 prepayUpTo15%OfOriginalAmount
 increasePaymentsByUpTo15%OfCurrentTermPayment

abstract anyAmountAnytime
 anyAmountUpToFullAmount
 atAnyTime
 withoutPenalty

-- fixed rate mortgages

abstract FixedRate : Mortgage
 [valueProposition = “Play it safe by knowing exactly what your mortgage rate and payment will be for the full
abstract OpenTerm : FixedRate
 [valueProposition = "Get fixed payments, the flexibility to pay off your mortgage faster, and the security of locking into another term at any time."
 open
 term in 6months + 1year
 prepaymentOptions -> anyAmountAnytime
]

abstract Flexible/Closed Mortgage : FixedRate
 [valueProposition = "Lock into a competitive rate for 6 months with the option to convert to a longer term without penalty."
 closed
 term = 6months
 prepaymentOptions -> 15%Prepayment15%Increase
]

abstract 1,2YearClosedTermMortgages : FixedRate
 [valueProposition = "Get the stability of a fixed rate and payment over the short-term at a very competitive rate."
 closed
 term in 1year + 2years
 prepaymentOptions -> 15%Prepayment15%Increase
]

abstract 3,4,5,7YearClosedTermMortgages : FixedRate
 [valueProposition = "Get the stability of a fixed rate and payment over the long-term at a very competitive rate."
 closed
 term in 3years + 4years + 5years + 7years
 prepaymentOptions -> 15%Prepayment15%Increase
 cashBackOption
 cashBackUpTo5%ofMortgagePrinciple
 upfront
]

abstract 5YearClosedTermMortgages : FixedRate
 [valueProposition = "By locking into a longer term mortgage, especially while current interest rates are so low, you can have the security of knowing your payment won't change."
 closed
 term = 5years
 prepaymentOptions -> 15%Prepayment15%Increase
]

abstract 10YearClosedTermMortgages : FixedRate
 [valueProposition = "A competitive low rate and payment that are guaranteed for 10 years."
 closed
 term = 10years
 prepaymentOptions -> 15%Prepayment15%Increase
 cashBackOption
 cashBackUpTo5%ofMortgagePrinciple
 upfront
]

-- variable rate mortgages
abstract VariableRate : Mortgage
 [valueProposition = [“Consider a variable rate mortgage. Where the rate you pay fluctuates with Scotiabank Prime Rate.”
 term = 5years
 resetTogetherWithPaymentAmountEachTimeScotiabankPrimeRateChanges]
 addedBenefits
 convertAnytimeToFixedTermProductWithTermGreaterThanTheRemainingTerm
 withoutPenalty

abstract ScotiaFlexValueMortgageClosedTerm : VariableRate
 [valueProposition = “Take advantage of a mortgage with a low rate and low payment.”
 closed]
 prepaymentOptions -> 15%Prepayment15%Increase

abstract ScotiaFlexValueMortgageOpenTerm : VariableRate
 [valueProposition = “Flexibility means greater mortgage value: you get a low rate and low payments, and a guaranteed rate discount when you lock into Scotiabank’s 5-year fixed rate.”
 open]
 prepaymentOptions -> anyAmountAnytime

-- special programs mortgages

abstract SaveNow,SaveLaterMortgage : FixedRate
 [valueProposition = “Save now with a competitive mortgage rate and save later with a guaranteed rate discount. Limited time offer.”
 closed
 term = 1year]
 optionalRenewalTerm -> MortgageTerm = 5years
 initialInterestRateDiscount -> Percentage = 1.66
 renewalInterestRateDiscount -> Percentage = 1.25
 prepaymentOptions -> 15%Prepayment15%Increase
 addedBenefits
 renewTo5-year,FixedRate,ClosedTerm
 noEarlyRenewalInterest
 noEarlyPrepaymentPenaltie

abstract LongAndShortMortgage : Mortgage
 [valueProposition = “Trying to decide between short-term rates and more secure long-term borrowing options? Here’s a mortgage for you.”]
 fixedRate : FixedRate
 [closed]
 flexValue : VariableRate

 [principalMortgageAmount = fixedRate.principalMortgageAmount + flexValue. principalMortgageAmount]
 [balance = fixedRate.balance + flexValue.balance]

 [conventional <=&> fixedRate.conventional && flexValue.conventional]
 [insured <=&> fixedRate.insured && flexValue.insured]
abstract SecondaryHomeFinancingProgram : Mortgage

valueProposition = "If you're looking for a getaway or a second home to call your own, consider your many financing options."

prepaymentOptions -> 15%Prepayment15%Increase

addedBenefits

partOfScotiaTotalEquityPlan

abstract ScotiaMortgageForSelfemployed : Mortgage

valueProposition = "Are you self-employed and looking to buy a home? See how much easier it can be."

prepaymentOptions -> 15%Prepayment15%Increase

conditions

loanToValue <= 90
75 <= loanToValue <= 90 <= insured

abstract ScotiaStartRightMortgageProgram : Mortgage

xor residentType

temporary

valueProposition = "We can help you feel at home faster if you are working and living in Canada temporarily."

permanent

valueProposition = "A specially designed program to meet your mortgage needs and help you in obtaining your first home in Canada."

prepaymentOptions -> 15%Prepayment15%Increase

conditions

loanToValue <= 95
(temporary => (65 <= loanToValue <= insured)) ||
(permanent => (75 <= loanToValue <= insured))

-- if temporary then ... or if permanent ...
-- Scotia Total Equity Plan

abstract ScotiaTotalEquityPlan

borrowingLimit -> Currency -- calculated
 establishedWithASingleApplication

appraisedPropertyValue -> Currency -- provided in application
[borrowingLimit = 80% * appraisedPropertyValue]

currentMortgageBalance -> Currency -- provided in application

homeEquity -> Percentage -- calculated
[homeEquity >= 20
 homeEquity = currentMortgageBalance * 100 / appraisedPropertyValue]

-- choose any combination of products

'FixedRate *
'VariableRate *
'LongAndShortMortgage *
'ScotiaLinePersonalLineofCredit *
'CreditLineForBusiness *
'ScotiaLineForBusinessVISACard *
'ScotiaGoldPassportForBusinessVISACard *
'ScotiabankVisaCard *
'ScotiaPlanPersonalLoans *
'TermLoanForBusiness *
'OverdraftProtection ?

[(sum FixedRate.balance +
 sum VariableRate.balance +
 sum LongAndShortMortgage.balance +
 sum ScotiaLinePersonalLineofCredit.balance +
 sum CreditLineForBusiness.balance +
 sum ScotiaLineForBusinessVISACard.balance +
 sum ScotiaGoldPassportForBusinessVISACard.balance +
 sum ScotiabankVisaCard.balance +
 sum ScotiaPlanPersonalLoans.balance +
 sum TermLoanForBusiness.balance +
 OverdraftProtection.balance) <= borrowingLimit] -- the grand total of all balances must be less or equal to the borrowing limit