
Feature-to-Code Mapping in Two Large Product Lines

Thorsten Berger1, Steven She2, Krzysztof Czarnecki2 and Andrzej Wąsowski3

1 University of Leipzig, Germany berger@informatik.uni-leipzig.de
2 University of Waterloo, Canada {shshe, kczarnec}@gsd.uwaterloo.ca

3 IT University of Copenhagen, Denmark wasowski@itu.dk

Abstract. Large product lines have complex build systems, which ob-
scure mapping of features to code. We extract this mapping out of the
build systems of two operating systems kernels, Linux and FreeBSD. The
mapping is presented as a set of presence conditions relating code frag-
ments to features. We characterize them and make available for use as
a benchmark for analysis tools for variability modeling. We hope that
this work will enable the study of real-world variability models and the
creation of new, scalable product-lines design and analysis tools.

1 Introduction

Large software product lines have complex build systems that enable compiling
the source code into different products that make up the product line [1]. Un-
fortunately, the dependencies among the available build options, which we refer
to as features and their mapping to the source code they control are implicit in
complex imperative build-related logic. As a result, reasoning about dependen-
cies is difficult; this not only makes maintenance of the variability harder, but
also hinders development of support tools such as feature-oriented traceability
support, debuggers for variability models, variability-aware code analyzers, or
test schedulers for the product line. Thus, we advocate use of explicit variability
models, consisting of a feature model specifying the available features and their
dependencies and a mapping between product specifications conforming to the
feature model and the implementation assets.

Previously [6] we extracted a feature model of the Linux Kernel. Now, we
extract the feature-to-code mapping from the build systems of two prominent
operating systems, Linux and FreeBSD. We represent the mapping as presence
conditions [2, 3]. A presence condition (PC) is a Boolean expression on an im-
plementation artifact written in terms of features. If a PC evaluates to true for
a configuration, then the corresponding artifact is included in the product.

We show that extraction of mappings from build systems is feasible. We ex-
tracted 10,155 PCs, each controlling the inclusion of a source file in a build.
The PCs reference the total of 4,774 features and affect about 8M lines of code.
We publish the PCs for Linux and FreeBSD as they constitute a highly realistic
benchmark for researchers designing tools such as dead code analysis, feature
impact analysis, reasoners and configurators. Our work, combined with the fea-
ture model of Linux [6] and the work of Tartler et al. on the code-statement-level

Kernel

Resour
ces

Header
files

Feature
Definitions
& constraints

common
features

architecture
-specific
features

(Makefile)
Generator

Configurator Header
files

#DEFINE
#DEFINE

ge
ne

ra
te

Source file
…
#IFDEF F1
…
#IF defined(F4 & F6)
…
#ENDIF
…
ENDIF

define
symbols

select and
compile

configuration

Core
Kbuild / Make

Scripts

Presence
Conditions

conceptually different

source artifacts

target artifacts

Fig. 1. Conceptual view on the build system of Linux and FreeBSD

variability [8], will eventually lead to extracting a complete variability model en-
compassing the feature model and the mapping from features to code. We hope
that this work will enable the study of real-world variability models and the
creation of new scalable design and analysis tools for such product lines.

Related Work. Previous studies of Linux’s build system focus on studying only
selected configurations. Adams et al. [1] argue that more insight could be gained
by analyzing the entire variability in the build system. The work by Tartler et
al. mentioned above, and work of Liebig et al. [4] examine the variability induced
through preprocessor directives in Linux and FreeBSD. While both works deliver
insights into solution space variability, we address the variability induced by the
very mapping from problem to solution spaces.

2 Variability and Build Systems in Linux and FreeBSD

Both Linux and FreeBSD have a wealth of features: 5,323 in Linux (v. 2.6.28.6,
x86 architecture) and 1,203 in FreeBSD (v. 8.0.0, all architectures). Here fea-
tures are user-selectable increments of functionality, such as drivers, protocols,
file systems, and multimedia devices. Linux provides its own feature modeling
language, Kconfig, and a simple graphical configurator. FreeBSD has no config-
urator; instead, variants are specified by instantiating textual templates. Both
systems support boolean and data valued features. Many Linux features assume
values from a three element domain (y, m, n) encoding the binding mode (static
linking, dynamic linking, and absence, respectively). We refer to [6, 5] for details.

Fig. 1 summarizes the architecture of the build systems of Linux and FreeBSD.
The two build systems specify and instantiate the mapping between features and
source differently. Linux uses KBuild—a project specific build system compris-
ing a hierarchy of Makefiles following a specific convention. The logic selecting
source files for a particular configuration is spread over more than 600 files in
the entire source tree. FreeBSD relies on the standard Make tool and a generator
creating a monolithic Makefile after evaluating the PCs in a given configuration.
The mapping is specified explicitly in 9 central files.

2

Both systems generate header files that expose current configuration data
to the preprocessor. We focus solely on the dependencies expressed in the build
system. The dependencies in source files have already been discussed in [4, 7, 8].

Linux Kernel. The top-level KBuild Makefile declares lists collecting files for
compilation in different modes: to be linked statically (obj-y), to be linked
dynamically as modules (obj-m), or to be included in a library (lib-y). It then
descends into the source tree and conditionally invokes other makefiles, which
add files to the lists. In the simplest case, files are added unconditionally. In
the example below two files are added to the obj-y list together with directory
partitions/, which means that the Makefile located there should be included
in further traversal. Note that names of object files are used, not source files.
The source files are linked to object files by implicit compilation rules of Make:

obj-y += open.o jffs2.o partitions/
jffs2-y := compr.o dir.o file.o ioctl.o nodelist.o malloc.o (1)

The second line creates a list indicating files that should be used to build
jffs2.o. A compilation rule specified elsewhere declares a dependency between
object files and lists of this kind. In the example, the PCs for all files are simply
true. However the complete PC of a file may be different, due to inheritance of
conditions from enclosing makefiles.

Files are added conditionally either by using control-flow statements of make
or by constructing the name of a list conditionally. We illustrate the latter first:

obj-$(JFFS2_FS) += jffs2.o
jffs2-$(JFFS2_FS_WRITEBUFFER) += wbuf.o (2)

Here $(JFFS2_FS) denotes a value of feature JFFS2_FS in the configuration, in
this case a string y, m or n, which is concatenated to create a list name. Note
that JFFS2_FS_WRITEBUFFER can only be y or n. This example results in the
following PC for wbuf.c:

JFFS2_FS_WRITEBUFFER=y ∧ (JFFS2_FS=y ∨ JFFS2_FS=m) (3)

Below we show a conditional make command that induces the following PC for
xfs_qm_stats.c: (XFS_FS=y ∨ XFS_FS=m) ∧ PROC_FS=y ∧ XFS_QUOTA=y.

obj-$(XFS_FS) += xfs.o
ifeq ($(XFS_QUOTA),y)

xfs-$(PROC_FS) += quota/xfs_qm_stats.o
endif

(4)

Some dependencies are expressed in complex manners. The next example in-
cludes dccp_ipv6 as a module if either the feature IPv6 or DCCP equals m:

obj-$(subst y,$(CONFIG_IP_DCCP),$(CONFIG_IPV6)) += dccp_ipv6.o , (5)

where subst is a substring substitution function. We created the PCs for these
complex manually. We obtain the following condition for this example: IPV6 =

m ∨ (IPV6=y ∧ (IP_DCCP = m ∨ IP_DCCP = y))

3

(a)

number of containing PCs

nu
m

be
r

of
 fe

at
ur

es
0

100

200

300

400

0
500

1000
1500
2000
2500
3000

0 5 10 15 20

F
reeB

S
D

Linux

(b)

number of features referenced

nu
m

be
r

of
 P

C
s

0
200
400
600
800

1000
1200
1400

0
500

1000
1500
2000
2500
3000

0 5 10 15 20

F
reeB

S
D

Linux

Fig. 2. (a) The no. of PCs that a feature appears in pruned to 20 PCs; features in
Linux and FreeBSD appear in up to 424 and 291 PCs respectively and (b) size of PCs

FreeBSD Kernel. Here, PCs are organized in few files. Each line contains a
source file name and a statement whether the file is mandatory or optional, with
a condition in conjunctive normal form. Build options and dependencies can be
appended if needed. An example of a simple specification of a variable file is:

crypto/des/des_ecb.c optional crypto | ipsec | netsmb (6)

3 Extraction and Results

Our extractor for Linux has a fuzzy parser recognizing all of the documented
variability specification patterns, but also some undocumented ones, which we
discovered in the KBuild Makefiles. For this work, we only analyzed the x86
architecture, starting with its main makefile and descending into the referenced
ones. The resulting Abstract Syntax Tree (AST)4 contains nodes representing
Makefiles, conditional statements, lists of compound objects, variable references,
and source files as leafs, some annotated with local PCs. Computing the PC of
a source file involved finding all paths from the file to the root while taking
variable resolution rules into account and then conjoining all expressions in a
path and making a disjunction over the path conditions.

Extracting PCs from the FreeBSD Kernel was much simpler. We created
parsers to analyze the build specification files and extracted PCs from the main
kernel build system. Interestingly, FreeBSD does not have tristate features for
addressing modules, but uses an independent module build system instead. The
PCs in the module build system appear to be similar to the ones in the main
system; however, analyzing the module build system is future work.

We extracted 7,243 PCs out of 596 makefiles in Linux’ x86 branch, whereas
we had to manually adapt 28 makefiles for our parser. Concerning FreeBSD, we
extracted 2,912 PCs from the entire codebase. Both datasets are available on
our website5 and cover 94% of Linux’ and 80% of FreeBSD’s source files. We
4 http://www.informatik.uni-leipzig.de/~berger/pcs/linux_build_ast.xml
5 http://www.informatik.uni-leipzig.de/~berger/pcs/lin_fb_pcs.txt

4

found the following reasons for uncovered files. First, many C files were only
included via other C files; second, additional obscure build logic was used; third,
files belong to additional non-kernel tools; and fourth, some files were actually
unreachable.

Fig, 2 visualizes basic properties of the collected PCs. We find that the ma-
jority of features (87% in Linux, 78% in FreeBSD) appear in less than four PCs
(Fig. 2a). However diversity is wide, with some features like SND appearing in
424 PCs in Linux and i386 appearing in 291 PCs in FreeBSD.

Next in Fig. 2b, we see that the sizes of the PCs in the two systems are very
similar, with Linux and FreeBSD having PCs referencing up to 24 and 19 unique
features respectively. In Linux, the largest PC belongs to isdn/hisax/arcofi.c,
which provides common functions across all HiSax drivers, a set of drivers for
various Siemens ISDN cards. Features in the driver set required the compila-
tion of this file. Similarly in FreeBSD, dev/usb/serial/usb_serial.c was a common
source file required by 19 USB features. Furthermore, we found that there were
only a small number files that were unconditionally included in both systems, re-
flected as files with zero features referenced. Therefore, we see that the majority
of files indeed have variability.

4 Conclusion

We have demonstrated the feasibility of extracting feature-to-code mappings
from the build systems of two operating systems. Although the extractors need
to be custom built, they can enable a wide range of useful tools, amortizing the
building effort. We also hope that the extracted mappings will provide designers
of variability tools and languages with a realistic benchmark.

References

1. Adams, B., Schutter, K.D., Tromp, H., Meuter, W.D.: The evolution of the linux
build system. In: 3rd International ERCIM Symposium on Software Evolution (2007)

2. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: GPCE’05. pp. 422–437 (2005)

3. Heidenreich, F., Wende, C.: Bridging the gap between features and models. In: 2nd
Workshop on Aspect-Oriented Product Line Engineering (AOPLE’07) (2007)

4. Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An analysis of the
variability in 40 preprocessor-based software product lines. In: ICSE (2010)

5. She, S., Berger, T.: Formal semantics of the Kconfig language, technical Note. Avail-
able at eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf

6. She, S., Lotufo, R., Berger, T., Wąsowski, A., Czarnecki, K.: Variability model of
the linux kernel. In: VaMoS’10. pp. 45–51 (2010)

7. Sincero, J., Tartler, R., Lohmann, D.: An algorithm for quantifying the program
variability induced by conditional compilation. Tech. rep., Univ. of Erlangen (2010)

8. Tartler, R., Sincero, J., Schröder-Preikschat, W., Lohmann, D.: Dead or alive: find-
ing zombie features in the Linux kernel. In: FOSD (2009)

5

