
Deploying Component–based Applications: Tools and
Techniques

Abbas Heydarnoori

School of Computer Science, University of Waterloo, Canada
aheydarnoori@uwaterloo.ca

Summary. Software deployment comprises activities for placing an already developed appli-
cation into its operational environment and making it ready for use. For complex component-
based applications that constitute many heterogeneous components with various hardware and
software requirements, this deployment process can become one of the most burning chal-
lenges. In this situation, it is difficult to manually identify a valid deployment configuration
that satisfies all constraints. Thus, automated tools and techniques are required to do the com-
plex process of software deployment. To address this requirement, a variety of tools and tech-
niques that support different activities of the deployment process have been introduced in both
industry and academia. This paper aims to provide an overview of these tools and techniques.

Key words: Software Components, Software Deployment, Deployment Life Cycle.

1 Introduction

Software deployment is a complex process that covers all post-development activi-
ties required to place an application into its target environment and make it available
for use [1]. Along with significant advances in software development technologies
in recent years,component-based software development(CBSD) has also gained a
lot of attention in both industry and academia [2]. CBSD is a paradigm advancing
a view of constructing software from reusable building blocks namedcomponents.
According to Szyperski [3], a software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies that can be deployed
independently and is subject to composition by third parties. With respect to this def-
inition, it is possible to have complex software systems that consist of a large number
of heterogeneous components. In these applications, various components of the ap-
plication often have different hardware and software requirements and hence they
may provide their functionality only when those requirements are satisfied. Further-
more, software systems may undergo numerous updates during their lifetime and the
components that comprise those systems are also more likely to be developed and
released independently by third parties. Under these circumstances, finding a valid
deployment configuration for a component-based application can be a challenging



2 Abbas Heydarnoori

task and it might be effectively impossible to manually find a valid deployment con-
figuration. This situation becomes even more complex in heterogeneous, resource-
constrained, distributed, and mobile computing platforms that demand highly effi-
cient software deployment configurations [4]. Thus, support for automated software
deployment process becomes crucial.

To address this requirement, software deployment process has gained a lot of at-
tention both in industry and research community in recent years and it is possible
to find a large number of tools, technologies, techniques, and papers that address
various aspects of the software deployment process from different perspectives. This
paper aims to provide a survey of the existing software deployment tools and tech-
niques in both industry and academia.

This paper is organized as follows. Section 2 considers some of the existing de-
ployment processes in literature and proposes a generic deployment process. Section
3 provides a survey of software deployment tools in industry. Section 4 surveys the
research-based techniques for the deployment of component-based applications. Fi-
nally, Section 5 concludes the paper.

2 Software Deployment Process

Software deployment is a sequence of related activities for placing a developed appli-
cation into its target environment and making the application ready for use. Although
this definition of software deployment is reasonable and clear, different sequences of
activities have been mentioned in literature for this process [5, 6, 7, 8, 9, 10, 11].
This section has a look at some of the proposed deployment processes in literature
and introduces a generic deployment process that covers the activities of all of them.
This generic deployment process is then used in the rest of this paper to characterize
different software deployment tools and techniques.

OMG Deployment and Configuration Specification(OMG D&C Specification)
[5] outlines the following steps in the deployment process:packagingthe applica-
tion components;installationwhich involves populating a repository with the appli-
cation components;configuringthe functionality of the installed application in the
repository;planning the deployment;preparing the target environment by moving
the application components from the repository to the specified hosts; andlaunching
the application.

Caspian[6] defines a five-step process for the deployment of component-based
applications into distributed environments:acquisitionof the application from its
producer;planningwhere and how different components of the application should
be installed in the target environment, resulting in a deployment plan;installing the
application into its target environment according to its deployment plan;configuring
it; and finallyexecutingit.

Liu and Smith [7] in their LTS framework for component deployment specify
the following activities for the deployment process:shippingthe system from the
development site;installation of the system at the deployment site;reconfiguring



Deploying Component–based Applications: Tools and Techniques 3

the system at the deployment site in response to changes; and actuallyexecutingthe
system.

TheOpen Service Gateway initiative(OSGi) [8] is an independent consortium of
more than eighty companies launched in 1999 with the aim of developing a platform
for the deployment of services over the wide-area networks to local networks and
devices. In the deployment model of OSGi, a deployment process includes only the
install, update, anduninstallactivities.

Carzaniga et al. [9] inSoftware Dockresearch project define software deploy-
ment as an evolving collection of interrelated activities that are done on either the
producer side or consumer side. The producer side activities includereleaseand
retire; the consumer side activities constituteinstall, activate(launch), deactivate,
reconfigure, adapt, update, anduninstall (remove). Although this is one of the most
comprehensive definitions of software deployment in literature, it lacks two activi-
ties in our view:acquireandplan. Acquisition is actually performed as part of the
Software Dock’sinstall activity and it is not explicitly introduced as a separate task.
However, in many cases, the software systems are first acquired by the software con-
sumers and then they are deployed on their operational environments. Moreover, as
mentioned earlier, for large, distributed, component-based applications with many
constraints and requirements, it is first required to plan how to install the compo-
nents of the software system into its operational environment and then perform the
actual installation. Hence, it is required to explicitly have a planning stage during
the software deployment process. Finally, in the Software Dock deployment process,
both of thereconfigureandadaptactivities change the configuration of the deployed
software system. Thereconfigureactivity assumes that it starts from a valid configu-
ration of a system and then transforms it into another valid configuration. Theadapt
activity assumes it starts from an invalid configuration and then transforms it to a
valid configuration. However, since both of these activities perform the same task
which is changing the configuration of a software system into a valid configuration,
we propose theconfigureactivity rather than both of the Software Dock’sadaptand
reconfigureactivities.

With respect to the above discussion, we propose a generic deployment process
with ten activities that covers the activities of all the deployment processes men-
tioned in this section (Table 1). The description of these activities are as follows: (1)
release:packages, prepares, and advertises a system for deployment into operational
environments; (2)acquire: during this activity, the components of the application
are acquired from the software producer and are put in a repository; (3)plan: given
the specifications of the component-based application, the target environment, and
user-defined constraints regarding this deployment, this activity determines where
and how different components of the application will be executed in the target envi-
ronment, resulting in a deployment plan; (4)install: this activity uses the deployment
plan generated in the previous activity to install the application into its operational
environment; (5)configure:this activity changes the configuration of an already in-
stalled software system; (6)activate:actually launches the application; (7)update:
modifies a previously installed system and deploys a new, previously unavailable
configuration of that system or updates the components of the system with newer



4 Abbas Heydarnoori

releases of those components; (8)deactivate:shuts down executing components of
an activated system; (9)uninstall: completely removes the software system from its
operational environment; and (10)retire: makes a system release unavailable.

Table 1 compares the activities of different deployment processes and shows how
they are mapped to the activities of the generic deployment process. However, it
should be noted that the particular practices and procedures being done in each ac-
tivity highly depend on the characteristics of the software system being deployed,
its operational environment, and on the requirements of software developers and
users. Therefore, the generic deployment process presented in this section can be
customized for specific deployment requirements. For instance, Hnetynka and Mur-
phy in [10] adapt the OMG D&C Specification for the deployment of Java-based
components into embedded systems such as mobile phones and PDAs. As another
example, Coupaye and Estublier in [11] present a deployment process for the de-
ployment of complex applications into large companies.

3 Software Deployment Technologies in Industry

A variety of technologies exist in industry to support various activities of the software
deployment process. This section surveys these technologies and classifies them into
six major groups. Table 2 represents these groups and their corresponding example
tools. This table also characterizes these deployment technologies in terms of their
support for the activities of the generic software deployment process. In this table,
• represents complete support,◦ indicates partial support, and no circle means no
support.

3.1 User-Driven Installers

There are many programs that are used to install and uninstall software systems
from a single machine. Examples include InstallShield [12], InstallAnywhere [13],

Table 1.Mapping the activities of existing deployment processes to the activities of the generic
software deployment process

Deployment Processes in Literature
OMG D&C LTS OSGi Software Dock Caspian

G
en

er
ic

S
of

tw
ar

e
D

ep
lo

ym
en

tP
ro

ce
ss

Release Packaging Shipping - Release -

Acquire Installation - - - Acquiring

Plan Planning - - - Planning

Install Preparation Installation Install Install Installation

Configure ConfigurationReconfiguration - Adapt & ReconfigureConfiguration

Activate Launch Execution - Activate Execution

Update - - Update Update -

Deactivate - - - Deactivate -

Uninstall - - Uninstall Uninstall -

Retire - - - Retire -



Deploying Component–based Applications: Tools and Techniques 5

Table 2. Comparison of different industry-based deployment technologies in terms of their
support for the activities of the generic software deployment process

Deployment TechnologyExample Tools
Generic Software Deployment Process

R
e

le
a

se

A
cq

u
ire

P
la

n

In
st

a
ll

C
o

n
fig

u
re

A
ct

iv
a

te

U
p

d
a

te

D
e

a
ct

iv
a

te

U
n

in
st

a
ll

R
e

tir
e

User-Driven Installers
InstallShield, InstallAny-
where, Setup Factory

• • ◦ ◦ •

Package Managers
Linux RPM, Fedora yum,
DebianDpkg

• ◦ • ◦ • •

Web-based Deployment Tools
Java Web Start, Windows
Update, Microsoft Click-
Once

• • • ◦ • •

Systems Management Tools
Microsoft SMS, IBM TME,
Altiris

• • • • • • •

Remote Sessions Citrix, PowerTCP, SSh •

Publish/Subscribe Tools
TIBCO Rendezvous, IBM
Gryphon, Sun JMS

• • • •

and Setup Factory [14]. These tools are typically not more than a compression tool
with a user-friendly interface (e.g., a wizard). In these tools, different files of software
systems are compressed into self-installing archives and are delivered to users. Then,
users themselves use these tools to uncompress those archives on their intended ma-
chines. Users can also use those tools to uninstall the software systems by undoing
the changes they have made during the installation. Many installers may also support
some sort of configuration by which users can add or remove some functionalities
from the installed software systems.

There are a number of limitations associated with user-driven installers. First,
they are targeted to a single machine and it is typically impossible to use them for
distributed platforms. Also, users themselves have to administer their software sys-
tems. This can have several difficulties such as: it is error prone, it is impossible
to always rely on users, it might be difficult to enforce it, and finally it is hard to
monitor.

3.2 Package Managers

Modern operating systems often come with package managers to assist in installing,
uninstalling, and updating software systems. Linux RPM [15], Fedora yum [16],
and DebianDpkg [17] are representatives of this category of tools. All these tools
are based on the concept ofpackageand arepositorythat keeps information about
the state of all installed packages. Each package comprises an archive of files to
be deployed along with some metadata describing the software package such as its
version.

The main goal of all package managers is to install packages in such a way that
the correct dependencies among them are preserved. Package managers offer several
functionalities such as creating a package, installing/uninstalling/updating a package,



6 Abbas Heydarnoori

verifying the integrity of an installed package, querying the repository, and checking
dependencies among installed packages. However, they do not take into account the
execution phase of the deployment process and the package’s content may not be
executable code at all. Another issue of package managers is that they are targeted to
a single machine and do not support distributed systems or large scale deployments.
In addition, they are also user-driven and may pose the problems mentioned for user-
driven installers.

3.3 Web-based Deployment Tools

Web-based deployment tools try to use the connectivity and popularity characteris-
tics of the Internet during the software deployment process. In these tools, it is not
required to install or update the software system on every single host separately. In-
stead, the software application is deployed only to a single Web server. Then, client
machines (users) connect to this server to download the application files or updates
automatically. Representatives of these tools are Java Web Start [18], Microsoft Win-
dows Update [19], and Microsoft ClickOnce [20]. However, one of the major limita-
tions of these tools is that they are useless when there is no Internet connectivity.

3.4 Systems Management Tools

The termsystems managementis typically used to describe a set of capabilities (e.g.,
tools, procedures, policies, etc.) that enable organizations to more easily support their
hardware and software resources. Systems management tools usually have a central-
ized architecture. In these tools, the IT administrator performs operations from a cen-
tralized location which is applied automatically to many systems in the organization.
Therefore, the IT administrator is able to deploy, configure, manage, and maintain a
large number of hardware and software systems from his own computer. Examples
of these tools are Microsoft Systems Management Server [21], IBM Tivoli Manage-
ment Environment [22], and Altiris Deployment Solution [23]. Systems management
tools are all based on centralized repositories that keep deployment metadata such as
client configurations and software packages. Moreover, they all support an inventory
of hardware and software resources.

Systems management tools support many of the software deployment activities.
In addition, all of the supported deployment activities can be done in a distributed
environment as well. However, it is obvious that these tools are suitable for medium
to large organizations. The issues associated with all these tools are that they are
often heavy and complicated systems, they all require reliable networks, they are all
based on complete administration control, and they are not viable for mobile devices.

3.5 Remote Sessions

Citrix [24], PowerTCP [25], and SSh [26] fall in this category of deployment tools.
In this category, software systems are deployed to a single server machine. Then,



Deploying Component–based Applications: Tools and Techniques 7

each client initiates a session on that server and invokes desired software systems on
it. Application state is kept entirely on the server. Therefore, these tools only support
the execution activity of the deployment process.

The advantages of these tools are that they reduce the inconsistencies in deployed
clients when the functionality is extended and it is not required to deploy the same
application to several machines. The disadvantages are server load, under-utilized
client resources, and consumption of network bandwidth.

3.6 Publish/Subscribe Tools

TIBCO Rendezvous [27], IBM Gryphon [28], and Sun Java Message Service [29]
are examples of this kind of tools. In this class of tools, users express their inter-
ests (“subscribe”) in certain kinds of events on a server, such as installing a new
application or updating installed applications. Then, whenever these events happen
on that server, they will be applied (“publish”) automatically to the subscribed ma-
chines. This method is an efficient approach for the distribution of data from a source
machine to a large number of target machines over a network.

The limitation of this class of tools is that the users themselves have to subscribe
for the deployment of applications. Furthermore, these tools might not be efficient in
costly and low-bandwidth networks.

4 Software Deployment Techniques in Research

Section 3 provided an overview of software deployment technologies in industry.
However, The deployment of component-based applications has been the subject of
extensive research in recent years. This section considers some of the deployment
techniques proposed in the research community and classifies them into eight ma-
jor deployment approaches. Table 3 represents these deployment approaches and
their corresponding example techniques. This table further compares these deploy-
ment techniques in terms of their support for the activities of the generic software
deployment process. However, this classification is not necessarily complete and it
could be extended in the future. Furthermore, these deployment approaches are not
completely disjoint and the same deployment technique might fall in two or more dif-
ferent deployment approaches. For instance, DAnCE [30] is a deployment technique
that is both QoS-aware and model-driven. However, this categorization represents
different directions of interest in research-based deployment techniques.

4.1 QoS-Aware Deployment

It is typically possible to deploy and configure a large and complex component-based
application into its target environment in many different ways, specifically when the
target environment is a distributed environment. Obviously, some of these deploy-
ment configurations are better than others in terms of some QoS (Quality of Service)



8 Abbas Heydarnoori

Table 3. Comparison of different research-based deployment approaches in terms of their
support for the activities of the generic software deployment process

Deployment Approach Example Techniques
Generic Software Deployment Process

R
e

le
a

se

A
cq

u
ire

P
la

n

In
st

a
ll

C
o

n
fig

u
re

A
ct

iv
a

te

U
p

d
a

te

D
e

a
ct

iv
a

te

U
n

in
st

a
ll

R
e

tir
e

QoS-Aware Deployment

DeSi •
MAL • ◦ ◦ ◦
Caspian •

Architecture-Driven Deployment
Prism-DE ◦ • • • •
Olan • • • • •

Model-Driven Deployment

OMG D&C • • • • • ◦
Deployment Factory • • • • • ◦
DAnCE • • • • • ◦ • ◦

Agent-based Deployment
Software Dock • • • • •
TACOMA • • • •

Grid Deployment
Globus Toolkit • • • •
ORYA • ◦ • •

Hot Deployment
OpenRec • ◦ • • • • • •
MagicBeans • ◦ • • • • • •

AI Planning-based Deployment
Sekitei •
CANS • • • ◦ ◦ ◦

Formal Frameworks
LTS • • ◦ • ◦ • • •
Conceptual •

attributes such as efficiency, availability, reliability, and fault tolerance. Thus, the
deployment configuration has significant impacts on the system behavior and it is
necessary to consider the issues related to the quality of a deployment. To this aim,
a number of research approaches have been proposed in literature that address this
aspect of software deployment. Examples includeDeSi[31], MAL [32], andCaspian
[6]. DeSi provides a deployment technique for maximizing theavailability of sys-
tems defined as the ratio of the number of successfully completed inter-component
interactions in the system to the total number of attempted interactions over a period
of time. MAL is a system that enables the deployment of QoS-aware applications
into ubiquitous environments. Ubiquitous systems such as Internet are those that can
be instantiated and accessed anytime, anywhere, and by using any computing de-
vices. Caspian provides a deployment planning approach in which the application
being deployed and its target operational environment are modeled by graphs. Then,
deployment is defined as the mapping of the application graph to the target environ-
ment graph in such a way that the desired QoS parameter is optimized. This deploy-
ment problem is solved for the QoS parametersmaximum reliabilityandminimum
costin [33] and [34] respectively.



Deploying Component–based Applications: Tools and Techniques 9

4.2 Architecture-Driven Deployment

The software architecture research community has also addressed configuration and
deployment issues for component-based applications ([4], [35], [36], [37], [38]). A
software architecture represents high-level abstractions for structure, behavior, and
key properties of a software system. Software architectures are usually specified in
terms ofcomponentsthat define computational units,connectorsthat define types
of interactions among components, and theconfigurationthat describes the topolo-
gies of components and connectors. For this purpose,Architecture Description Lan-
guagesor ADLshave been developed to describe software systems in terms of their
architectural elements.

Prism-DE[4] andOlan [35] are examples of deployment techniques that employ
the concepts of software architecture during the process of software deployment. In
these techniques, ADLs are used to specify valid deployment configurations. Then,
during the process of deployment, candidate deployment configurations are checked
against those valid deployment configurations.

4.3 Model-Driven Deployment

Model-Driven Architecture(MDA) [39] proposed by OMG is an approach for soft-
ware development based on models in which systems are built via transformations
of models. MDA defines two levels of models:Platform-Independent Model(PIM)
and Platform-Specific Model(PSM). Developers begin with creating a PIM, then
they transform the model step by step to a more platform-specific model until the
desired level of specificity is approached. In the case of software deployment, the
MDA approach starts with a platform-independent model of the target environment
and the transformations finish with specific deployment configurations for the con-
sidered component-based applications [40]. Model-driven deployment has gained a
lot of attention in recent years ([5], [30], [40], [41], [42], [43]). In particular,OMG
D&C Specification[5] follows MDA concepts to provide a unified technique for
the deployment of component-based applications into distributed environments. The
OMG D&C Specification defines three platform-independent models: thecomponent
model, thetarget model, and theexecution model. To use these platform-independent
models with a specific component model, they have to be transformed to platform-
dependent models, capturing the specifics of the concrete platform [44]. An example
of this transformation to theCORBA Component Model(CCM) can be found in [5].
However, Hnetynka in [40] mentions that OMG’s approach fails in building a sin-
gle environment for the unified deployment of component-based applications and it
leads to several deployment environments for different component models. To ad-
dress this issue, he examines several common component models (e.g.,COM, CCM,
EJB, SOFA, andFractal) and ADLs (e.g.,Wright andACME) to identify the set of
features that are missing in the OMG’s D&C component model. Based on this study,
he proposes a unified deployment component model and introducesDeployment Fac-
tory (DF) as a model-driven unified deployment environment. As another example
of model-driven deployment approaches,DAnCE[30] is a QoS-enabled middleware



10 Abbas Heydarnoori

that conforms to the OMG D&C Specification. DAnCE enables application deploy-
ers to deploy component assemblies of distributed real-time and embedded (DRE)
systems.

4.4 Agent-based Deployment

A mobile agentis defined as an object that migrates through many hosts in a hetero-
geneous network, under its own control, to perform tasks using resources of those
hosts [45]. AMobile Agent System(MAS) is defined as a computational framework
that implements the mobile agent paradigm. This framework provides services and
primitives that help the implementation, communication, and migration of software
agents.Software Dock[46] andTACOMA[47] are two MAS examples that use mo-
bile agents for the purpose of software deployment. Software Dock is a deployment
framework that supports cooperations among software producers themselves and be-
tween software producers and software consumers. To perform the software deploy-
ment activities, it employs mobile agents that traverse between software producers
and consumers. Similarly, TACOMA is a deployment framework based on mobile
agents for installing and updating software components in a distributed environment
such as Internet.

4.5 Grid Deployment

A computational gridis defined as a set of efficient computing resources that are
managed by a middleware that gives transparent access to resources wherever they
are located on the network [48]. A computational grid can include many heteroge-
neous resources (e.g., computational nodes with various architectures and operating
systems), networks with different performance properties, storage resources of dif-
ferent sizes, and so on. To take advantage of the computational power of grids, the
application deployment must be as automated as possible while taking into account
application constraints (e.g., CPU, Memory, etc.) and/or user constraints to prevent
the user from directly dealing with a large number of hosts and their heterogeneity
within a grid. Therefore, deployment of component-based applications into compu-
tational grids has been the subject of extensive research ([48], [49], [50], [51]).

4.6 Hot Deployment

In autonomic environments, a software system can automatically adapt its runtime
behavior with respect to the configuration of the drastically changing execution en-
vironment and user requirements [52]. In this context, it is required to dynamically
install, update, configure, uninstall, and replace software components without affect-
ing the reliable behavior of the system or other constituent components. In doing so,
a number of research projects address the ability of dynamically deploying software



Deploying Component–based Applications: Tools and Techniques 11

components during the program runtime, referred to as thehot deployment[7]. Open-
Rec[53] is a software architecture effort focusing on how to design dynamically re-
configurable systems. TheMagicBeansplatform [54] supports self-assembling sys-
tems of plug-in components that allow applications to be constructed and reconfig-
ured dynamically at runtime. Reference [55] presents a generic architecture for the
design and deployment of self-managing and self-configuring components in auto-
nomic environments. Some other work on dynamic reconfiguration and hot deploy-
ment are [56], [57], [58], [59], [60], and [61].

4.7 AI Planning-based Deployment

Planning the deployment of component-based applications into network resources
has also gained attention in the AI research community. Two reasons have been men-
tioned for this [62]: (1) the requirement to satisfy the qualitative (e.g., reliability) and
quantitative (e.g., disk quota) constraints; and (2) the fact that software deployment
may involve selecting among compatible components as well as insertion of auxil-
iary components. Because of these reasons, AI planning-based techniques have been
introduced for the purpose of software deployment.Sekitei[63] provides AI plan-
ning techniques for deploying components into resource-constrained distributed net-
works.CANSplanner [64] finds optimal deployment of components along network
paths.Pegasus[65] is a planning architecture for building grid applications.Ninja
planner [66] makes directed acyclic graph (DAG) structured applications by using
the available components in the network.Panda[67] has a database of predefined
plan templates and simply instantiates a suitable template based on the programmer-
provided rules that decide whether or not a component can be instantiated on a net-
work resource.

4.8 Formal Deployment Frameworks

There are few works that provide platform-independent formal frameworks for the
deployment of component-based applications. In these frameworks, different ac-
tivities of the software deployment process are defined formally in a platform-
independent manner that are suitable for derivation of theoretical results. For ex-
ample, they can give deployment tool developers a theoretical basis to implement
systems with well-defined behavior. Examples of these frameworks areLTS[7] and
conceptual foundation[68]. LTS provides formalisms for almost all the activities of
the software deployment process. The conceptual foundation only proposes condi-
tions under which various software installation strategies are safe and successful.

5 Conclusions

An application can provide its expected functionality only when it is deployed and
configured correctly in its operational environment. As a result, software deployment



12 Abbas Heydarnoori

is a critical task that takes place after the development of an application. Inspired by
the work by Carzaniga et al. [9], this paper defined software deployment as a process
comprising ten activities related to releasing, acquiring, planning, installing, config-
uring, activating, updating, deactivating, uninstalling, and retiring software systems.
However, for many modern component-based applications, the deployment process
is complicated by the dimensions along which a system can be configured. Thus, a
variety of tools and techniques have been introduced in both industry and academia
to address this problem. This paper surveyed a set of representatives of these tools
and techniques, and assessed them in terms of their support for the activities of the
deployment process. This assessment indicated that there is no deployment tool or
technique that can support the full range of deployment process activities. This sug-
gests the deployment of component-based applications as an open problem that re-
quires further research by the research community.

References

1. D. Heimbigner, R.S. Hall, and A.L. Wolf. A framework for analyzing configurations of
deployable software systems. InICECCS, 1999.

2. Ivica Crnkovic, Brahim Hnich, Torsten Jonsson, and Zeynep Kiziltan. Specification,
implementation, and deployment of components.Commun. ACM, 45(10):35–40, 2002.
ISSN 0001-0782.

3. C. Szyperski.Component Software - Beyond Object-Oriented Programming. Addison-
Wesley, 1999.

4. M. Mikic-Rakic and N. Medvidovic. Architecture-level support for software component
deployment in resource constrained environments. InCD, LNCS 2370, 2002.

5. Deployment and configuration of component-based distributed applications specification.
http://www.omg.org/docs/ptc/04-05-15.pdf .

6. A. Heydarnoori. Caspian: A QoS-aware deployment approach for channel-based
component-based applications. Technical Report CS-2006-39, David R. Cheriton School
of Computer Science, University of Waterloo, 2006.

7. Y.D. Liu and S.F. Smith. A formal framework for component deployment. InOOPSLA,
2006.

8. OSGi Alliance.http://www.osgi.org/ .
9. A. Carzaniga, A. Fuggetta, R.S. Hall, A.V.D. Hoek, D. Heimbigner, and A.L. Wolf. A

characterization framework for software deployment technologies. Technical Report
Technical Report CU-CS-857-98, Dept. of Computer Science, University of Colorado,
1998.

10. Petr Hnetynka and John Murphy. Deployment of Java-based components in embedded
environment. InIADIS Applied Computing, 2007.

11. T. Coupaye and J. Estublier. Foundations of enterprise software deployment. InCSMR,
2000.

12. InstallShield Developer.http://www.installshield.com/isd/ .
13. Zero G software deployment and lifecycle management solutions.http://www.

zerog.com/ .
14. Setup factory.http://www.indigorose.com/suf/ .
15. RPM package manager.http://www.rpm.org/ .



Deploying Component–based Applications: Tools and Techniques 13

16. Yum: Yellow dog updater.http://linux.duke.edu/projects/yum/ .
17. Package maintenance system for Debian.http://packages.debian.org/

dpkg/ .
18. Java web start technology.http://java.sun.com/products/javawebstart .
19. Microsoft windows update.http://update.microsoft.com .
20. ClickOnce: Deploy and update your smart client projects using a central server.http:

//msdn.microsoft.com/msdnmag/issues/04/05/clickonce/ .
21. Systems management server home.http://www.microsoft.com/smserver/ .
22. IBM Tivoli software.http://www.tivoli.com/ .
23. Altiris deployment solution.http://www.altiris.com/ .
24. Citrix. http://www.citrix.com/ .
25. PowerTCP.http://www.dart.com/powertcp/ .
26. Secure shell (SSH).http://www.ssh.com/ .
27. TIBCO Rendezvous.http://www.tibco.com/software/messaging/ .
28. IBM Gryphon.

http://www.research.ibm.com/distributedmessaging/ .
29. Java message service (JMS).http://java.sun.com/products/jms/ .
30. G. Deng, J. Balasubramanian, W. Otte, D. Schmidt, and A. Gokhale. DAnCE: A QoS-

enabled component deployment and configuration engine. InCD, LNCS 3798, 2005.
31. M. Mikic-Rakic, S. Malek, and N. Medvidovic. Improving availability in large, dis-

tributed component-based systems via redeployment. InCD, LNCS 3798, 2005.
32. D. Wichadakul and K. Nahrstedt. A translation system for enabling flexible and efficient

deplyoment of QoS-aware applications in ubiquitous environments. InCD, LNCS 2370,
2002.

33. A. Heydarnoori and F. Mavaddat. Reliable deployment of component-based applications
into distributed environments. InITNG, 2006.

34. A. Heydarnoori, F. Mavaddat, and F. Arbab. Deploying loosely coupled, component-
based applications into distributed environments. InECBS, 2006.

35. R. Balter, L. Bellissard, F. Boyer, M. Riveill, and J. Y. Vion-Dury. Architecturing and
configuring distributed application with Olan. InMiddleware, 1998.

36. V. Quema and E. Cecchet. The role of software architecture in configuring middleware:
The ScalAgent experience. InOPODIS, LNCS 3144, 2003.

37. V. Quema and et al. Hierarchical, and scalable deployment of component-based applica-
tions. InCD, LNCS 3083, 2004.

38. J. Matevska-Meyer, W. Hasselbring, and R. H. Reussner. Software architecture descrip-
tion supporting component deployment and system runtime reconfiguration. InWCOP,
2004.

39. OMG model driven architecture.http://www.omg.org/mda/ .
40. P. Hnetynka. A model-driven environment for component deployment. InSERA, 2005.
41. A. Hoffmann and B. Neubauer. Deployment and configuration of distributed systems. In

SAM, LNCS 3319, 2004.
42. N. Belkhatir, P. Cunin, V. Lestideau, and H. Sali. An OO framework for configuration of

deployable large component based software products. InOOPSLA ECOOSE Workshop,
2001.

43. S. Jansen and S. Brinkkemper. Modelling deployment using feature descriptions and state
models for component-based software product families. InCD, LNCS 3798, 2005.

44. L. Bulej and T. Bures. Using connectors for deployment of heterogeneous applications in
the context of OMG D&C Specification. InINTEROP-ESA, 2005.

45. D. Rus, R. Gray, and D. Kotz. Transportable information agents. InAAMAS, 1997.



14 Abbas Heydarnoori

46. R. S. Hall, D. Heimbigner, and A. L. Wolf. A cooperative approach to support software
deployment using the software dock. InICSE, 1999.

47. N. P. Sudmann and D. Johansen. Software deployment using mobile agents. InCD,
LNCS 2370, 2002.

48. S. Lacour, C. Perez, and T. Priol. A software architecture for automatic deployment of
CORBA components using grid technologies. InDECOR, 2004.

49. S. Lacour, C. Perez, and T. Priol. Deploying CORBA components on a computational
grid: General principles and early experiments using the Globus Toolkit. InCD, LNCS
3083, 2004.

50. V. Lestideau and N. Belkhatir. Providing highly automated and generic means for soft-
ware deployment process. InEWSPT, 2003.

51. P. Brebner and W. Emmerich. Deployment of infrastructure and services in the open grid
services architecture (OGSA). InCD, LNCS 3798, 2005.

52. R. Murch.Autonomic Computing. Prentice Hall, 2004.
53. J. Hillman and I. Warren. An open framework for dynamic reconfiguration. InICSE,

2004.
54. R. Chatley, S. Eisenbach, and J. Magee. Magicbeans: A platform for deploying plugin

components. InCD, LNCS 3083, 2004.
55. E. Patouni and N. Alonistioti. A framework for the deployment of self-managing and

self-configuring components in autonomic environments. InWoWMoM, 2006.
56. A. Akkerman, A. Totok, and V. Karamcheti. Infrastructure for automatic dynamic de-

ployment of J2EE applications in distributed environments. InCD, LNCS 3798, 2005.
57. H. Cervantes and R. S. Hall. Autonomous adaptation to dynamic availability using a

service-oriented component model. InICSE, 2004.
58. M. W. Hicks, J. T. Moore, and S. Nettles. Dynamic software updating. InPLDI, 2001.
59. H. Liu and M. Parashar. A component-based programming framework for autonomic

applications. InICAC, 2004.
60. S. R. Mitchell. Dynamic Configuration of Distributed Multimedia Components. PhD

thesis, University of London, 2000.
61. J. Paula, A. Almeida, M. Wegdam, M. V. Sinderen, and L. Nieuwenhuis. Transparent

dynamic reconfiguration for CORBA. InDOA, 2001.
62. T. Kichkaylo and V. Karamcheti. Optimal resource-aware deployment planning for

component-based distributed applications. InHPDC, 2004.
63. V. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained component deployment in wide-

area networks using AI planning techniques. InIPDPS, 2003.
64. X. Fu and V. Karamcheti. Planning for network-aware paths. InDAIS, LNCS 2893, 2003.
65. J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal, G. Mehta, and K. Vahi. The

role of planning in grid computing. InICAPS, 2003.
66. S. Gribble and et al. The Ninja architecture for robust internet-scale systems and services.

Computer Networks, 35(4):473–497, 2001.
67. P. Reiher, R. Guy, M. Yavis, and A. Rudenko. Automated planning for open architectures.

In OpenArch, 2000.
68. A. Parrish, B. Dixon, and D. Cordes. A conceptual foundation for component-based

software deployment.The Journal of Systems and Software, 57(3):193–200, 2001.


