
FACS’05 Preliminary Version

Towards an Automated Deployment Planner
for Composition of Web Services as Software

Components

Abbas Heydarnoori 1

School of Computer Science
University of Waterloo, Canada

Farhad Mavaddat 2

School of Computer Science
University of Waterloo, Canada

Farhad Arbab 3

Department of Software Engineering
Centrum voor Wiskunde en Informatica (CWI), The Netherlands

Abstract

In this paper, we present our work-in-progress on developing an automated deploy-
ment planner for the composition of Web services as software components using the
Reo coordination middleware in a distributed environment. Web services refer to
accessing services over the Web. Reo is an exogenous coordination model for compo-
sitional construction of component connectors based on a calculus of mobile channels
that has been developed at CWI (the Netherlands). Reo has a strong theoretical
underpinning which makes it a good candidate model for coordinating the work of
Web services participating in a composition. Suppose a new Web application has
been developed by composing a number of Web services with different requirements
and constraints. To run the application, it is required to deploy it on a number of
hosts with different computational capabilities available to the application in the
distributed environment (e.g., Internet) so that all constraints and requirements are
satisfied. Because of the many parameters and constraints in such a deployment
problem, it is difficult to do it manually. Thus, an automated deployment planner
is required for this purpose.

Key words: software components, software deployment, Reo
coordination model.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Heydarnoori, Mavaddat, and Arbab

1 Introduction

The Internet is rapidly changing from a set of wires and switches that carry
packets into a sophisticated infrastructure that delivers a set of complex value-
added services to end users [1]. The term “Web service” came into being to
represent a unit of business logic that an organization exposes to other orga-
nizations on the World Wide Web. Web services are gradually becoming the
most popular distributed computing paradigm for the Internet [2]. Advances
in Internet infrastructure and rapid evolution of the WWW are major enablers
of Web services.

Web services can be stand-alone or linked together to provide enhanced
functionality. In other words, Web services are inter-operable building blocks
for constructing applications. Therefore, the composition of Web services is an
important issue and a general coordination model for composing Web services
is required. The Reo coordination model is a good candidate for serving this
purpose [3]. Reo presents a paradigm for composition and exogenous coordi-
nation of software components based on the notion of mobile channels. In the
Reo model, complex coordinators, called connectors, are compositionally built
out of simpler ones. Reo has a strong theoretical underpinning and its logic
is mathematically modeled. In [4] one can find a coalgebric formal semantic
for Reo. Reo promotes loose coupling, distribution, mobility, exogenous coor-
dination, and dynamic reconfiguration. These properties make Reo a suitable
candidate model for composing Web services in a distributed environment.

Suppose a distributed application has been developed which utilizes a num-
ber of Web services with different requirements and constraints. In addition,
the Reo coordination middleware is used to coordinate the work of these Web
services. In this method, Web services are viewed as black box software com-
ponents, i.e., there are no concerns regarding their developments and internals.
To run the application, it is required to instantiate different components of
the application on different hosts with different computational capabilities
available to the application in the distributed environment. Furthermore, this
should be done in such a way that all requirements and constraints are met.
This process is called software deployment.

For large applications which consist of many components with many con-
straints and should be distributed on a large number of hosts with different
characteristics, manual deployment is impractical. Furthermore, users may
have specific requirements in such a deployment. For example, they may want
a specific component to be instantiated on a specific host. This complicates
the problem even more. Thus, an automated deployment planner is required
to effectively specify where different components should be instantiated in the
distributed environment. In this paper, our work-in-progress on developing

1 Email: aheydarnoori@uwaterloo.ca
2 Email: fmavaddat@uwaterloo.ca
3 Email: Farhad.Arbab@cwi.nl

2



Heydarnoori, Mavaddat, and Arbab

such an automated deployment planner is described.

This paper is organized as follows. Section 2 provides the required back-
ground of this research. In this section, Web services and the Reo coordi-
nation model are briefly described. In Section 3, developing a deployment
planner for Web services compositions using the Reo coordination middleware
is discussed. Section 4 reviews some related works and finally in Section 5,
concluding remarks are provided.

2 Background

The following topics form the background of our work: Web services, and the
Reo coordination model. In this section, we describe them.

2.1 Web Services

As the term “Web service” shows, it refers to accessing services over the World
Wide Web. According to the definition of Web services by IBM [5], “Web
services are a new breed of Web application. They are self-contained, self-
describing, modular applications that can be published, located, and invoked
across the Web. Web services perform functions, which can be anything from
simple requests to complicated business processes”.

As this definition shows, Web services can be seen as the building blocks for
constructing distributed Web applications. A significant difference between
the Web services model and other existing models such as CORBA/IIOP,
COM/DCOM, and Java/RMI is that Web services can be written in any
language and can be accessed using the HTTP protocol. In other words,
in the Web services computing model, distributed software components are
interfaced via non-object-specific protocols [6].

2.1.1 Viewing Web Services as Software Components

The aim of component-based software development is to make a new system
by composing and integrating existing software components together. This
method of software development has many advantages and it has been pro-
posed as a paradigm for developing more reliable and higher-quality software
systems within shorter development time, lower cost and effort [7]. Because of
the many advantages of CBSD, there is a widespread belief that one day de-
velopers could easily assemble applications from prebuilt components instead
of writing them from scratch.

As mentioned earlier, Web services are self-contained, self describing mod-
ular units providing location independent business or technical services that
can be published, located, and invoked across the Web. Thus, one can view
them as a natural extension of software component thinking. Web services, as
software components, represent black box functionalities that can be reused
without worrying about how those services are implemented, or where they

3



Heydarnoori, Mavaddat, and Arbab

are situated [8]. In other words, they can be used as the building blocks for
the development of complex distributed applications.

2.2 Reo Coordination Model

Reo is a channel-based coordination model that exogenously coordinates the
cooperative behavior of component instances in a component-based applica-
tion [3]. From the point of view of Reo, an application consists of a number of
component instances communicating through connectors that coordinate their
activities. The emphasis of Reo is on connectors, their composition and their
behavior. Reo does not say much about the components whose activities it
coordinates. In Reo, connectors are compositionally constructed out of a set
of simple channels. Thus, channels represent atomic connectors. A channel
is a communication medium which has exactly two channel ends. A channel
end is either a source channel end or a sink channel end. A source channel
end accepts data into its channel. A sink channel end dispenses data out of
its channel. Although every channel has exactly two ends, these ends can be
of the same or different types (two sources, two sinks, or one source and one
sink). Reo assumes the availability of an arbitrary set of channel types, each
with well-defined behavior provided by the user. However, a set of examples
in [3] show that exogenous coordination protocols that can be expressed as
regular expressions over I/O operations correspond to Reo connectors which
are composed out of a small set of only five primitive channel types:

• Sync: It has a source and a sink. Writing a value succeeds on the source
of a Sync channel if and only if taking of that value succeeds at the same
time on its sink.

• LossySync: It has a source and a sink. The source always accepts all data
items. If the sink does not have a pending read or take operation, the
LossySync loses the data item; otherwise the channel behaves as a Sync
channel.

• SyncDrain: It has two sources. Writing a value succeeds on one of the
sources of a SyncDrain channel if and only if writing a value succeeds on
the other source. All data items written to this channel are lost.

• AsyncDrain: This channel type is analogous to SyncDrain except that the
two operations on its two source ends never succeed simultaneously. All
data items written to this channel are lost.

• FIFO1: It has a source and a sink and a channel buffer capacity of one data
item. If the buffer is empty, the source channel end accepts a data item and
its write operation succeeds. The accepted data item is kept in the internal
buffer. The appropriate operation on the sink channel end (read or take)
obtains the content of the buffer.

In Reo, a connector is represented as a graph of nodes and edges such
that: zero or more channel ends coincide on every node; every channel end

4



Heydarnoori, Mavaddat, and Arbab

Fig. 1. Barrier synchronization connector in Reo

Fig. 2. Modeling the flight reservation system with Reo

coincides on exactly one node; and an edge exists between two (not necessarily
distinct) nodes if and only if there exists a channel whose channel ends coincide
on those nodes. As an example of Reo connectors, Fig. 1 shows a barrier
synchronization connector in Reo. In this connector, a data item passes from
a to d only simultaneously with the passing of a data item from g to j and
vice versa. This is because of the “replication on write” property in Reo, and
different characteristics of different channel types.

2.2.1 An Example of Composing Web Services Using Reo

In the following, we provide a simple example of how a Reo connector such
as barrier synchronization can be used to compose a number of Web services
together.

Suppose a travel agency wants to offer a Flight Reservation Service (FRS).
For some destinations, a connection flight might be required. For example, if
you want to travel from Toronto to Glasgow, you need to travel from Toronto
to London. Then, you need to travel from London to Glasgow. Suppose
some other agencies offer services for International Flight Reservation (IFRS)
and Domestic Flight Reservation (DFRS). Thus, FRS commits successfully
whenever both IFRS and DFRS services commit successfully. This behavior
can be easily modeled by a barrier synchronization connector in Reo (Fig.
2). The FRS service makes commit requests on channel ends A and B. These
commits will succeed if and only if the reservations at the IFRS and DFRS
services succeed at the same time.

This example shows how Reo succeeds in modeling complex behaviors. In
Reo, it is easily possible to construct different connectors by a set of simple
composition rules out of a very small set of primitive channel types. One can
find a more elaborate introduction to Reo in [9], and a detailed description of
the language and its model in [3].

5



Heydarnoori, Mavaddat, and Arbab

3 Developing A Deployment Planner

In the previous section, we described the Reo coordination model and in-
troduced it as a good candidate model for composing and coordinating Web
services. For more information on compositional construction of Web services
using the Reo coordination model, you can refer to [10] where the requirements
of Reo-enabled Web services are discussed. That paper shows the necessary
layers between Web services and the Reo coordination middleware which are
necessary for composing them together using the Reo connectors. In this sec-
tion, another aspect of this problem is considered and our ongoing work on
developing a deployment planner for the composition of Reo-enabled Web ser-
vices is introduced. We begin with a description of the software deployment
process.

3.1 Software Deployment Process

Software deployment is a sequence of related activities for placing a developed
application into its target environment and making the application available
for use. Though this definition of software deployment is reasonable and clear,
for developing an automated deployment planner, the characteristics and na-
ture of the deployment activities must be described more clearly.

Different sequences of activities are mentioned in literature for the software
deployment process. Some of them are discussed in Section 4. However, in our
view, the software deployment process should include at least the following
activities: Acquiring, Planning, Installation, Configuration, and Execution.
Below are brief descriptions of these activities:

• Acquiring: In this activity, the components of the application being deployed
and the metadata specifying the application are acquired from the software
producer and are put in a repository to be used by other activities of the
deployment process.

• Planning: Given the specifications of the component-based application, a
target environment, and user-defined constraints, this activity determines
where different components of the application will be executed in the target
environment, resulting in a deployment plan.

• Installation: This activity uses the deployment plan generated in the pre-
vious activity to install the application into the target environment. More
specifically, this activity transfers the components of the application from
the repository to the hosts in the target environment.

• Configuration: After installing the application components into the target
environment, it might be necessary to modify its settings and configurations.
For example, after installing an application, one may want to set different
welcome messages for different users.

• Execution: following the installation and configuration of the software ap-

6



Heydarnoori, Mavaddat, and Arbab

plication, it can be run. More specifically, the installed application com-
ponents into the hosts are launched, the interconnections among them are
instantiated, the components are connected to the interconnections, and the
software application actually starts to work.

In this paper, our focus is on the planning stage of this process. For
large, complex applications similar to Web applications being considered in
this paper, users should not be required to manually deploy a large number
of components with different properties on several hosts in a distributed envi-
ronment. Therefore, this process should be as automated as possible. In the
following section, we talk about this automated deployment planner in more
detail.

3.2 Deployment Planner

In the previous section, we defined the software deployment process in gen-
eral and motivated the need to develop an automated deployment planner
for deploying large, complex, component-based applications into distributed
environments. In this section, we describe an automated deployment plan-
ner in the context of Web services compositions using the Reo coordination
middleware.

Suppose the specification of the Web application to be deployed is given.
In this application, a number of Web services are composed together by us-
ing a Reo circuit. Thus, this specification specifies these Web services, their
requirements and constraints, and the Reo circuit used among them. The
implementations of these Web services and their internals are not important
and they are viewed as black box software components. Furthermore, this
specification describes the Reo circuit by specifying the nodes of the Reo cir-
cuit, channels among these nodes and their types, and each Web service is
connected to which node.

In addition to this specification, the specification of the available resources
in the distributed environment is given. This specification describes a number
of hosts and their computational capabilities. The computational capabil-
ities of these hosts are different implementations of Reo channels they can
support. In this level of abstraction, low level hardware parameters as CPU
speed, memory, disk, etc. are not important. The reason is that we wish
to focus on software abstraction and not hardware abstraction. As an exam-
ple of computational capabilities, suppose host A can support three different
implementations of the Reo’s Sync channel (e.g., simple message passing, en-
crypted message passing, and using the shared memory). Logically, they are
all implementations of the Sync channel, but their requirements, costs, and
speeds differ. Similarly, different channel types have different implementations
on different hosts.

Furthermore, users should be able to specify their constraints and require-
ments regarding the deployment of the application. Some examples of these

7



Heydarnoori, Mavaddat, and Arbab

requirements are certain Web services on certain hosts, certain quality of ser-
vice (QoS) requirements like cost, speed, and so on.

The deployment planner uses these specifications as input and generates
the specification of a deployment plan. In this deployment plan, different
pieces of the application (Web services and Reo nodes) are mapped to the
available resources subject to the given constraints. In other words, this de-
ployment plan specifies each of the Web services and nodes of the Reo circuit
should run where in the target environment. In the following section, different
issues that should be considered in developing such a deployment planner are
discussed.

3.3 Challenges in Developing a Deployment Planner

In the previous sections, we provided the problem definition of our ongoing
work on developing an automated deployment planner for Web applications.
In this section, we present different aspects of this problem and provide a list
of the sub-problems we have to cope with in order to solve the whole problem.

One of the important sub-problems that should be considered is related to
resource allocation. The deployment planner is supposed to optimally allocate
resources available at different hosts to accommodate the requirements and
constraints of the application. So, generating such a deployment plan becomes
a constraint satisfaction problem and so, it should be possible to develop a
mathematical representation of that problem and then solve it. Generally,
finding the best solution for such problems that have many parameters is
impossible. So, we should try to find the best possible solutions for them. For
this purpose, a set of heuristics should be developed and applied to effectively
solve such constraint satisfaction problems. In Section 3.4, an example of such
heuristics is provided.

Another important issue in a deployment is its quality. For any large,
complex Web application multiple deployments in a distributed environment
are typically possible. Obviously, some of those deployments are more effective
than others in terms of some quality of service (QoS) requirements such as
cost, reliability, speed, efficiency, and so on. Maximizing the QoS of a given
system may require the system to be redeployed [11]. Thus, considering the
issues related to QoS represents another important aspect of this project.

Other issues relate to specification languages. As mentioned earlier, the
specification of the Web application to be deployed and the specification of
the distributed environment should be provided as inputs to the deployment
planner. Thus, specification languages are required for this purpose. We
name these languages Application Specification Language (ASL) and Resource
Specification Language (RSL) respectively. ASL will be used to specify Web
services utilized in the application, the Reo circuit used to compose them, and
requirements of the application. RSL will be used to specify different hosts in
the distributed environment available to the application, their computational

8



Heydarnoori, Mavaddat, and Arbab

capabilities, and their constraints. Furthermore, for generating deployment
plans, a Deployment Specification Language (DSL) should be devised. The
deployment planner will use this language to generate deployment plans.

3.4 A Graph-based Approach for Deployment Planning

At the time of writing this paper, we have used a graph-based approach to
solve the software deployment problem. For this purpose, two graphs are made
in this approach: the Application Graph, and the Target Environment Graph.
The application graph models a component-based application as a graph of
components connected by different channel types. The target environment
graph models the distributed environment as a graph of hosts connected by
different channel types that can exist between every two hosts. In other words,
before starting the deployment planning, the channel types that can exist be-
tween every two hosts in the target environment are specified. Then, the
deployment planning of an application is defined as the mapping of its ap-
plication graph to its target environment graph, subject to maximization of
the desired QoS parameter. As an example of how such efficient algorithms
and techniques can be applied to effectively solve the deployment problem,
in the following, we talk about finding the most cost-effective deployment
configuration.

Suppose different hosts in the target environment have different costs and
whenever they are being used, their costs should be paid to their adminis-
trator(s). In this situation, the most cost-effective deployment configuration
should be found. For this purpose, a collection of available hosts in the dis-
tributed environment must be selected so that the total cost of the deployment
is minimal and all components are also assigned to a host. It is easily possible
to prove that this problem is equivalent to the Minimum Set Cover problem
in graph theory [12].

Definition 3.1 (Minimum Set Cover Problem) Given a finite set U of
n elements, a collection of subsets of U , S = {s1, s2, ..., sk} such that every
element of U belongs to at least one si, and a cost function c : S → R, the
problem is to find a minimum cost sub-collection of S that covers all elements
of U .

The cost-effective deployment problem can be converted to the minimum
set cover problem in the following way:

• Set U = {C1, C2, ..., Cn}, i.e., the components of the application are set as
the elements of the universe;

• Set S = {CSH1 , CSH2 , ..., CSHm} in which each CSHi
corresponds to host

Hi, and it represents the set of components of the application that can be
run on host Hi.

• Define c : S −→ R return the cost of each host.

9



Heydarnoori, Mavaddat, and Arbab

Fig. 3. Linked-list holding the application graph of the flight reservation system

Fig. 4. A sample linked-list holding the properties of available hosts in the target
environment

However, it is proved that the minimum set cover problem is a NP-hard
problem and it can not be solved in polynomial time [12]. But, there exist
some greedy approximation algorithms that can find reasonably good answers
in polynomial time [12]. Thus, to solve the cost-effective deployment problem,
first it can be converted to the minimum set cover problem as mentioned
above. Then, by using existing algorithms for solving the minimum set cover
problem, all components of the application will be assigned to at least one
host and the cost of the deployment will be close minimal too.

3.5 Prototype Implementation

We have implemented a deployment planner tool by Java to represent how our
approach works in practise. This tool can be used for planning the deployment
of any kind of component-based applications, and it is not specific to Web-
based applications.

The specifications of the application being deployed and the target envi-
ronment are given to this tool by two input files. The data structure used
to hold the information about the application and the target environment is
linked-list. In this structure, the topology of the application is kept as a linked-
list of components. Each component itself points to a linked-list containing
the information about adjacent components and the channel types used to
connect the current component to them (Fig. 3). Also, the information about
the target environment is kept as a linked-list of hosts. Each host points to
a linked-list holding the properties of that host (Fig. 4). These properties
include different channel types they can support, their costs, their IPs, and
so on. In Fig. 3 and Fig. 4, Tis represent different channel types or im-
plementations. As we see, this linked-list data structure is flexible and gives

10



Heydarnoori, Mavaddat, and Arbab

us the freedom to define as many properties as we want for different hosts.
After processing the input files and generating these linked-lists, the deploy-
ment planner tool uses them and starts to generate the actual deployment
plan. At the time of writing this paper, this tool can be used to find the
most cost-effective deployment configuration in polynomial time (O(log(n)))
by using the techniques introduced in the previous section and the greedy ap-
proximation algorithm presented in [12]. For future work, we plan to design
a number of algorithms for maximizing other QoS properties (e.g., reliability,
performance, security, etc.), and include them in this tool.

4 Related Work

Deployment of component-based applications into distributed environments
is an open problem in both research and industry and it is possible to find a
large number of tools and papers related to it. In this section, two of the most
relevant ones are considered: Software Dock and OMG D&C Specification.

4.1 Software Dock

The University of Colorado Software Dock research project has created a
distributed, agent-based deployment framework that supports cooperation
among software producers themselves and between software producers and
software consumers [13]. The Software Dock architecture is shown in Fig. 5.
This architecture has the following components:

• Release dock: Its purpose is to serve as a release repository for the software
systems provided by the software producer. In this repository, each soft-
ware release is semantically described using a standard semantic schema:
Deployable Software Description or DSD.

• Field Dock: It is a server residing at a consumer site and provides informa-
tion about the resources and configuration of the consumer site.

• Agents: Each software release is accompanied by generic agents that perform
software deployment processes with the help of interpreting the semantic
description of the software release.

• Wide-area event system: The release dock generates events as changes are
made to the software release that it hosts.

In Software Dock research project, software deployment is defined as a
collection of interrelated activities that form the software deployment life cycle
[14]. This cycle includes the following activities: release, install, activate,
update, adapt, reconfigure, deactivate, remove, and retire. These activities can
be divided into two groups:

• Producer-side Activities:
· Release: This includes all the tasks required to package, prepare, provide,

and advertise a system for deployment to consumer sites. This activity

11



Heydarnoori, Mavaddat, and Arbab

Fig. 5. Software Dock architecture (taken from [13])

acts as a bridge between development and deployment.
· Retire: When a software system or a given configuration of a software

system is no longer supported by the software producer, this activity is
done.

• Consumer-side Activities:
· Install: This activity configures and assembles all of the necessary re-

sources for using a given software system.
· Activate: This is responsible for running or executing a deployed software

system.
· Deactivate: This is responsible for shutting down any executing compo-

nents of an activated software system.
· Update: This modifies a previously installed software system and deploys

a new, previously unavailable configuration of a software system.
· Adapt: This activity maintains the consistency of the currently selected

configuration of a deployed software system.
· Reconfigure: Its purpose is to select a different configuration of a previ-

ously deployed software system from its existing semantic description.
· Remove: this activity is performed when a software system is no longer

required at a consumer site.

A description of the actual deployment by the architecture presented in
Fig. 5 follows. When a software system is to be installed on a given con-
sumer site, initially an agent responsible for installing that software and the
DSD description of that software are loaded onto the consumer site from the
originating release dock. This agent docks at the local field dock and con-
figures the software system using the DSD description of that software and
the consumer site state information provided by the field dock. When this
configuration is done, this agent asks the precise configuration that it requires
from its release dock. It also may request other agents (such as update and
adapt) from its release dock to come and dock at the local field dock and do
other deployment activities. The wide-area event service provides a means of

12



Heydarnoori, Mavaddat, and Arbab

connectivity between software producers and software consumers.

4.2 OMG Deployment and Configuration Specification

The “OMG Deployment and Configuration Specification” or “OMG D&C
Specification” is an attempt towards a unified framework for the deployment
of component-based applications [15]. The deployment process defined in this
specification consists of five stages:

• Installation: During installation, the software package is put into a reposi-
tory. This activity does not involve transfer of binary files to the hosts.

• Configuration: When the software is installed in the repository, its func-
tionality can be configured.

• Planning: This planning involves selection of hosts the software will run on,
the resources it will require to run, deciding which implementations will be
used for component instances, and so on.

• Preparation: This activity prepares the target environment for the execution
of the software.

• Launch: In this stage, the application is executed. As planned, component
instances are created and configured on hosts in the target environment and
the connections among the instances are established.

The OMG D&C Specification defines three platform independent models,
the component model, the target model, and the execution model. Each of these
models is also split into the data model and the runtime (management) model
to reduce the complexity. The runtime models deal with runtime entities and
they are outside the scope of this paper. Below are brief descriptions of data
models:

• Component Data Model: This model provides information about installed
and configured software packages in the repository. This information in-
cludes descriptions about interfaces, implementations, configurations, etc.,
of the package components.

• Target Data Model: This model describes the target environment in which
the application will be deployed.

• Execution Data Model: This is the deployment plan and specifies the component-
based application in terms of component instances, connections among
them, and assignments of the instances to the computational hosts in the
target environment.

As mentioned earlier, these models are platform independent. In order to
use them with a specific component model, they should be transformed to
platform dependent models, capturing the specifics of the concrete platform
[16]. An example of this transformation to the CORBA Component Model
(CCM) can be found in [15].

13



Heydarnoori, Mavaddat, and Arbab

5 Conclusions

The aim of software deployment process is to bring a developed application
into its target environment and make it available for use. For large, complex,
component-based applications that include many components with different
requirements and should be distributed in many hosts with different compu-
tational capabilities, manual deployment is not easy, and automated tools are
required for this purpose. In this paper, we presented our ongoing work on
developing an automated deployment planner for Web services applications
using the Reo coordination middleware. The strong formal basis of Reo and
its easy-to-use composition rules encouraged us to choose Reo as the coordi-
nation model for Web services compositions. In this method, Web services are
treated as black box software components.

For the given specifications of a Web application to be deployed, available
resources in the distributed environment, and user-defined constraints, a de-
ployment plan specifies each of the components of the application should run
on which of the hosts to instantiate a running Web application so that all
requirements and constraints are met.

Acknowledgment

The authors would like to acknowledge Dr. Nikolay Diakov for his helpful
comments in developing the ideas expressed in this paper.

References

[1] Chandra, P., Fisher, A., Kosak, C., Ng, T. S. E., Steenkiste, P., Takahashi E.
and Zhang, H., “Darwin: Customizable resource management for value-added
network services,” In Proceedings of the 6th IEEE International Conference on
Network Protocols, Oct. 1998.

[2] Gergic, J., Kleindienst, J., Despotopoulos, Y., Soldatos, J., Patikis, G.,
Anagnostou, A. and Polymenakos, L., “An Approach to lightweight deployment
of web services,” In Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering 2002 (SEKE 2002), ACM Press, 635-
640.

[3] Arbab, F. “Reo: A Channel-based Coordination Model for Component
Composition,” Mathematical Structures in Computer Science, 14, 3 (June 2004),
329-366.

[4] Arbab, F. and Rutten, J.J.M.M. “A Coinductive Calculus of Component
Connectors,” In Proceedings of 16th International Workshop on Algebraic
Development Techniques (WADT 2002), LNCS 2755, Springer-Verlag, 2003, 35-
56.

14



Heydarnoori, Mavaddat, and Arbab

[5] “Web services: the Web’s next revolution,”
https://www6.software.ibm.com/developerworks/education/wsbasics/wsbasics-
a4.pdf, Last visited: Sep. 30, 2005.

[6] “Introduction to Web Services,”
http://www.embedded.com/story/OEG20020125S0103, Last visited: Sep. 30,
2005.

[7] Heydar Noori, A., and Mavaddat, F., “On Software Components
Characterization and Specification,” In Proceedings of the 9th Annual Internat-
ional CSI Computer Conference, Tehran, Iran, 2004.

[8] Stojanovic, Z., Dahanayake, A. and Sol, H., “Agile Modeling and Design of
Service-Oriented Component Architecture,” In Proceedings of the 1st European
Workshop on Object-Orientation and Web Services at ECOOP 2003, Darmstadt,
Germany, July 21-25, 2003.

[9] Arbab, F. and Mavaddat, F., “Coordination through channel composition,” In
Proceedings of the 5th International Conference on Coordination Models and
Languages (Coordination 2002), LNCS 2315, Springer-Verlag, 21-38.

[10] Diakov, N. K. and Arbab, F., “Compositional Construction of Web Services
Using Reo,” In Proceedings of the 2nd International Workshop on Web Services:
Modeling, Architecture and Infrastructure (WSMAI’2004) (Porto, Portugal,
April 13-14, 2004). INSTICC Press, 2004, 49-58.

[11] Mikic-Rakic, M., Malek, S., Beckman, N. and Medvidovic, N., “A Tailorable
Environment for Assessing the Quality of Deployment Architectures in Highly
Distributed Settings,” In Proceedings of the 2nd International Working
Conference on Component Deployment (CD 2004), Edinburgh, UK, May 2004.

[12] Cormen, T. H., Leiserson, C.E., Rivest, R.L., and Stein, C. “Introduction to
Algorithms”, Second edition, MIT Press, 2001.

[13] Hall, R.S., Heimbigner, D., and Wolf, A.L. A Cooperative Approach to Support
Software Deployment Using the Software Dock. In Proceedings of the 1999
International Conference on Software Engineering, ACM Press, New York, May
1999, 174-183.

[14] Carzaniga, A., Fuggetta, A., Hall, R. S., Hoek, A. V. D., Heimbigner, D., Wolf,
A. L., “A Characterization Framework for Software Deployment Technologies,”
Technical Report CU-CS-857-98, Dept. of Computer Science, University of
Colorado, April 1998.

[15] Object Management Group, “Deployment and Configuration of Component-
based Distributed Applications Specification,”
http://www.omg.org/docs/ptc/04-05-15.pdf, Last visited: Sep. 30, 2005.

[16] Bulej, L. and Bures, T. Using Connectors for Deployment of Heterogeneous
Applications in the Context of OMG D&C Specification. In Proceedings of the
INTEROP-ESA 2005 Conference, Geneva, Switzerland, Feb 2005.

15


