
Round-Trip Engineering using Framework-Specific Modeling Languages

Round-Trip Engineering of Eclipse Plug-Ins Using Eclipse
Workbench Part Interaction FSML

Demonstration of the Prototype

Michał Antkiewicz and Krzysztof Czarnecki
University of Waterloo

{mantkiew, kczarnec}@swen.uwaterloo.ca

Abstract
A Framework-Specific Modeling Language (FSML) is a kind of
Domain-Specific Modeling Language that is used for modeling
framework-based software. FSMLs enable automated round-trip
engineering over non-trivial model-to-code mappings and thereby
simplify the task of creating and evolving framework-based appli-
cations. In this demonstration, we present a prototype implemen-
tation of Eclipse Workbench Part Interaction, a FSML capturing
an aspect of Eclipse plug-in development. We walk through an ex-
ample Eclipse plug-in development scenario and demonstrate the
round-trip engineering capabilities of the prototype.

Categories and Subject DescriptorsD.2.1 [Software Engineer-
ing]: Requirements/Specifications—Tools; D.2.2 [Software En-
gineering]: Design Tools and Techniques—Computer-aided soft-
ware engineering (CASE); D.2.4 [Software Engineering]: Soft-
ware/Program Verification

General Terms Documentation, Design, Languages, Verification

Keywords Object-oriented application framework, domain-specific
modeling, Framework-Specific Modeling Language, FSML, round-
trip engineering, Workbench Part Interaction, WPI, Eclipse

1. Description
What problems are addressed?Using models in software engi-
neering requires establishing and maintaining consistency between
the models and the implementation code. Round-trip engineering
is an approach to model-driven software development, where the
models and the code are synchronized byreconciling the differ-
ences rather than just performing forward engineering to produce
code from models and reverse engineering to produce models from
code. Reconciliation propagates individual changes among related
artifacts by updating them rather than recreating and replacing pre-
vious versions of the artifacts.

Framework-Specific Modeling Languages (FSMLs) were re-
cently proposed as a means to aid the framework instantiation
process [3]. FSMLs are defined on top of object-oriented appli-
cation frameworks and are used to express models showing how

Copyright is held by the author/owner(s).

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

framework-provided concepts are used in framework-based appli-
cations. FSMLs enable automated round-trip engineering over non-
trivial model-to-code mappings.

What will the audience be seeing?In this demonstration, we
present a prototype implementation of Eclipse Workbench Part
Interaction (WPI) [2], a FSML capturing an aspect of Eclipse
plug-in development. WPI offers explicit definitions of concepts
provided by the Eclipse platform such asview, editor, listens to
selection, requires adapter, andprovides selection.

During the demonstration, we first create a sample Eclipse plug-
in using an Eclipse-provided wizard that generates the necessary
implementaton code. The code implements a singleview, i.e., con-
tains an instance of theviewconcept. We then automatically reverse
engineer the plug-in code to create its WPI model. The WPI model
is then manually edited by removing or modifying the properties or
featuresof the concept instances that were detected in the code or
by adding new concept instances to the model. The resulting model
is shown in the upper part of Figure 1. The model contains sev-
eral instances of framework-provided concepts, including the view
that was detected in the code by the reverse engineering process
and an instance of therequires adapterconcept. TheProperties
view shows features of the selected view. While the model is being
modified, the corresponding code can also be modified in a way
that amounts to adding or removing concept instances or modify-
ing their properties.

After each change, we execute a synchronization procedure
which compares the model and the code and computessynchro-
nization statesdescribing the discovered changes. TheModel-
Code Synchronizationview in Figure 1 contains example syn-
chronization states:modification for SampleView, reverse addi-
tion for extendsPageBookView feature, andforward modifica-
tion for PartId feature. The new and old values are indicated for
thePartId feature. A new instance of thelistens to partsconcept
has been also recognized in the code. We reconcile each changed
concept automatically using thereconcileaction and then show the
results of the reconciliation. We also remove an implementation of
a mandatory feature from the code and show how broken concept
instances can be recognized and automatically be fixed.

An on-line version of the demonstration is available [1].
What makes the software relevant to the OOPSLA commu-

nity? Object-oriented application frameworksare one of the most
effective and widely used software reuse techniques. However, the
creation of framework-based applications (i.e.,framework comple-
tion or framework instantiation) is often challenging. The develop-
ers need to know what the framework-provided concepts are and
how to instantiate them in order to achieve the desired effect. Fur-
thermore, the developers also need to know which concepts have
already been instantiated and how they were instantiated in order



Figure 1. Example WPI model and result of synchronization shown in Model-Code Synchronization view

to understand the application. These challenges can be addressed
by using models to aid framework instantiation and round-trip en-
gineering to keep the models and the code consistent. A FSML
defines a language for expressing such models and FSML concept
definitions encode the framework instantiation knowledge and en-
able automatic creation and recognition of concept instances in the
code.

What is unique about the design or implementation?WPI is
a practical and non-trivial FSML. WPIconceptsare decomposed
into atomic featuresthat correspond to basic implementation steps
or choices andcomposite featuresthat represent higher-level im-
plementation choices. The semantics of every concept and every
feature is defined usingforward and reverse mappings. Forward
mappings define how aconcept instanceor a feature can be cre-
ated, updated and modified in the code. Examples of forward map-
pings include creating a class, implementing an interface, adding a
class member, modifying XML configuration file, weaving a before
advice, and changing the value of an argument of a method call.
Reverse mappings define how a concept instance of a feature can
be recognized in the code. Examples of reverse mappings include
verifying structural constraints, such asA extends B, behavioral
constraints, such asA calls B.m(), retrieving values of method
call arguments, and handling XML configuration files.

FSMLs enable round-trip engineering by allowing for a fine-
grained execution of the mappings. The prototype supportsagile
round-trip engineeringwhere both the model and the code can be
created and modified independently and synchronized whenever
desired, provided that a model can be completely retrieved from
the code using static analysis.

What underlying technologies are used?Abstract syntax, in-
cluding well-formedness constraints, is implemented using Eclipse
Modeling Framework [4] and its model validation framework. Re-
verse mappings use the Java Model, AST, query, and pattern match-
ing APIs of Eclipse’s Java Development Tools (JDT) [5] and the
type inference engine of theInfer Generic Type Argumentsrefactor-
ing [6]. Forward mappings use JDT’s Java Model and AST rewrit-
ing APIs. Details of the WPI FSML design and prototype imple-
mentation are available in the technical report [2].

What techniques were used to build the software?The proto-
type consists of three Eclipse plug-ins. The metamodel and abstract
syntax editor were generated using Eclipse Modeling Framework.
The mappings were implemented in Java.

What are the interesting technical details and challenges?
The reverse mappings are limited by availability and effectiveness
of static analysis techniques. Implementation of theaddition, mod-
ification, andremovalaspects of the forward mappings is particu-

larly challenging as it involves direct code manipulation in differ-
ent places and needs to be flexible enough to take different coding
styles into account.

2. About the Authors
Michał Antkiewicz received the MSc (2003) degree in Computer
Science from the Wroclaw University. Currently, he is a Ph.D. can-
didate in Electrical and Computer Engineering department at the
University of Waterloo. He is a member of the Generative Software
Development Lab and a Ph.D. Fellow with IBM Centers for Ad-
vanced Studies in Ottawa. Previously, he worked on feature mod-
eling and feature-based model templates. Currently, he works on
Framework-Specific Modeling Languages. His main research in-
terests include software product line engineering, domain-specific
modeling, and code generation and static analysis in the context of
round-trip engineering.

Krzysztof Czarnecki received the Dipl.-Inf. (1995) from the
Ilmenau Technical University, MSc (1994) from California State
University at Sacramento, and Ph.D. (1998) from the Ilmenau
Technical University. Currently, he is an Assistant Professor in
Electrical and Computer Engineering department, at the University
of Waterloo, where he heads the Generative Software Development
Lab. Before coming to Waterloo, he spent eight years at Daimler-
Chrysler Research working on the practical applications of gen-
erative programming. He co-authored the book ”Generative Pro-
gramming” (Addison-Wesley, 2000). His main research interests
include generative software development, model-driven software
development, software product lines, and software design.

References
[1] M. Antkiewicz. Eclipse Workbench Part Interaction FSML on-line

demo.http://gp.uwaterloo.ca/files/WPIDemo/.

[2] M. Antkiewicz and K. Czarnecki. Eclipse Workbench Part Interaction
FSML. Technical Report 2006-09, ECE, University of Waterloo, 2006.
http://gp.uwaterloo.ca.

[3] M. Antkiewicz and K. Czarnecki. Framework-Specific Modeling
Languages with Round-Trip Engineering. InMoDELS, 2006.

[4] Eclipse Foundation. Eclipse Modeling Framework (EMF). Available
athttp://www.eclipse.org/emf.

[5] Eclipse Foundation. Java Development Tools (JDT). Available at
http://www.eclipse.org/jdt.

[6] F. Tip, R. Fuhrer, J. Dolby, and A. Kieżun. Refactoring techniques
for migrating applications to generic Java container classes. Technical
Report RC 23238, IBM T.J. Watson Research Center, 2004.


