
Model-Driven Software Product Lines

Krzysztof Czarnecki, Michał Antkiewicz,
Chang Hwan Peter Kim, Sean Lau, Krzysztof Pietroszek

University of Waterloo
200 University Ave. West

Waterloo, ON N2L 3G1, Canada

{kczarnec,mantkiew,chpkim,sqlau,kmpietro}@swen.uwaterloo.ca

ABSTRACT
Model-driven software product lines combine the abstraction
capability of Model Driven Software Development (MDSD)
and the variability management capability of Software Prod-
uct Line Engineering (SPLE). This short contribution mo-
tivates the idea of model-driven software product lines and
briefly explains the concepts underlying feature-based model
templates, which is a particular technique for modeling soft-
ware product lines.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifica-
tions—Tools; D.2.2 [Software Engineering]: Design Tools
and Techniques—Computer-aided software engineering (CA-
SE); D.2.4 [Software Engineering]: Software/Program
Verification; D.2.13 [Software Engineering]: Reusable Soft-
ware—Domain engineering, Reuse models

General Terms
Design, Documentation, Verification

Keywords
Domain analysis, feature modeling, model-driven software
development, product configuration, software-product lines,
software reuse, variability modeling and management

1. INTRODUCTION
Software product line engineering and model-driven soft-

ware development are two recent trends that have been
drawing increased attention from the software development
community. Software product line engineering (SPLE) [10,
1] optimizes the development of individual systems within an
application domain by leveraging their common characteris-
tics and managing their differences in a systematic way. In
SPLE, individual systems can be built rapidly from reusable
assets, such as a set of components and/or a common plat-
form.

Model-driven software development (MDSD) aims at cap-
turing every important aspect of a software system through
appropriate models. Compared to implementation code,
models capture the intentions of the stakeholders more di-
rectly, are freer from accidental implementation details, and

Copyright is held by the author/owner.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

are more amenable to analysis. In MDSD, models are not
just auxiliary documentation artifacts; rather, they are source
artifacts and can be used for automated analysis and/or
code generation.

Generative software development [2] and related approach-
es, such as Software Factories [6], have been propagating
the integration of software product lines and model-driven
software development; also, an entire workshop has been
recently dedicated to this topic [9]. At the root of this de-
velopment lies the recognition that SPLE and MDSD are
not only complementary, but their integration bears the po-
tential for significant synergies. While MDSD can help us
represent different aspects of a product line more abstractly,
SPLE provides a well- defined application scope, which puts
the development and selection of appropriate modeling lan-
guages on a sound basis. Furthermore, the automated anal-
ysis and code generation afforded by precise models can help
us automate the creation of product line members.

A particular technique for model-driven development of
product lines that was proposed in our research group is
feature-based model templates [3]. In a nutshell, a model
template can represent a set of model variants in a super-
imposed form within a single artifact. The represented vari-
ants could be behavioral, structural, or non-functional mod-
els. Furthermore, a feature-based model template also con-
tains a feature model which concisely represents the avail-
able choices within the set of variants. Thus, feature-based
model templates combine two ingredients: feature modeling
and model templates, which we describe as next.

2. FEATURE MODELING
Feature modeling is a technique for representing the com-

monalities and the variabilities among a set of systems in
concise, taxonomic form [7]. Features are prominent func-
tional and/or nonfunctional characteristics of the systems.
Feature models are hierarchies of features that describe dif-
ferent kinds of variability. For example, some features are
mandatory and some are optional or alternative.

We have developed a particular form of feature modeling,
which is referred to as cardinality-based [5]. In cardinality-
based feature modeling, the number of possible selections
from a group of features is specified by a cardinality inter-
val. Furthermore, a feature can have a cardinality interval
expressing whether the feature can be selected or cloned.
Finally, features can have attributes for representing values
such as numbers and strings. These additional modeling fa-
cilities make the feature models applicable to a wider range
of configuration problems, such as embedded software [4].

126



Feature models are requirements-level artifacts. They are
useful for scoping product lines, i.e., deciding which features
should be supported by the product line and which feature
should not. They also provide a vocabulary to concisely
describe the members of a product line. In particular, we
can use them to create feature configurations as input to an
automated product derivation process.

The actual semantics of features can be captured by other
models, such as structural, behavioral, or non-functional
models expressed in an appropriate modeling language. This
idea brings us to the concept of feature-based model tem-
plates.

3. FEATURE-BASED MODEL TEMPLATES
A feature-based model template consists of feature models

and annotated models implementing the features. The an-
notations refer to the features in the feature model and can
have the form of presence conditions, iteration directives,
and/or meta-expressions. Presence conditions are similar
to the #ifdef directive in the C preprocessor, but applied
to model elements. Iteration directives allow iterative tem-
plate expansion, and meta-expression can be used to com-
pute model elements. Our approach works for any notation
defined using the Meta-Object Facility (MOF) [8], such as
UML, but can also be adapted for other metamodeling for-
malisms.

As already mentioned, a model template represents a set
of requirements-, design-, or implementation-level model vari-
ants in a superimposed form. This way, the variants can
be maintained as a single artifact, rather than individually.
Furthermore, the annotations provide traceability between
features and the model elements that realize them. Finally,
we can produce a template instance for a given feature con-
figuration automatically. An automated verification proce-
dure ensures that no ill-structured template instances can
be produced.

As a proof of concept, we have built a set of tools sup-
porting our approach. The set contains (1) fmp, an Eclipse
plug-in for feature modeling and configuration; (2) fmp2rsm,
a plug-in that adds support for model templates to IBM
Rational Software Modeler, an Eclipse-based UML2 mod-
eling environment; and (3) template verifier, an extension
to fmp2rsm that can verify for a given template that no
ill-defined template instances can be produced from a valid
feature configuration.

Our other contribution, which is located in the demonstra-
tion section of this volume, gives a more detailed description
of these tools, followed by a brief discussion.

4. ABOUT THE AUTHORS
Krzysztof Czarnecki is an Assistant Professor in the De-

partment of Department of Electrical & Computer Engineer-
ing (ECE), University of Waterloo, where he leads a research
group on generative and model-based software engineering.
Micha�l Antkiewicz and Krzysztof Pietroszek are PhD can-
didates in the Department of ECE, University of Waterloo.
Sean Lau and Peter Kim are Master’s degree candidates
in the same department. Micha�l is responsible for fmp and
fmp2rsm. Sean is responsible for validation of the approach.
Peter is responsible for constraint-based feature configura-
tion and feature model synchronization. Finally, Krzysztof
Pietroszek is responsible for the template verifier.

5. REFERENCES
[1] P. Clements and L. Northrop. Software Product Lines:

Practices and Patterns. Addison-Wesley, Boston, MA,
2001.

[2] K. Czarnecki. Overview of Generative Software
Development. In Proceedings of Unconventional
Programming Paradigms (UPP) 2004, 15-17
September, Mont Saint-Michel, France, Revised
Papers, volume 3566 of LNCS, pages 313–328.
Springer-Verlag, 2004. http://www.swen.uwaterloo.
ca/~kczarnec/gsdoverview.pdf.

[3] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. In R. Glück and M. Lowry, editors, GPCE
2005 - Generative Programming and Component
Enginering. 4th International Conference, Tallinn,
Estonia, Sept. 29 – Oct. 1, 2005, Proceedings, volume
3676 of LNCS, pages 422–437. Springer, 2005.

[4] K. Czarnecki, T. Bednasch, P. Unger, and U. W.
Eisenecker. Generative programming for embedded
software: An industrial experience report. In
D. Batory, C. Consel, and W. Taha, editors,
Proceedings of the ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and
Component Engineering (GPCE’02), Pittsburgh,
October 6-8, 2002, volume 2487 of LNCS, pages
156–172, Heidelberg, Germany, 2002. Springer-Verlag.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software Process Improvement and
Practice, 10(1):7–29, 2005.

[6] J. Greenfield and K. Short. Software Factories:
Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley, Indianapolis, IN, 2004.

[7] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, Nov.
1990.

[8] Object Management Group. Meta-Object Facility,
2002. http://www.omg.org/technology/documents/
formal/mof.htm.

[9] D. C. Schmidt, A. Nechypurenko, and E. Wuchner.
MODELS’05 Workshop “MDD for Software
Product-lines: Fact or Fiction?”.
http://www.geocities.com/andreynech/

MDDandProductLinesWorkshop.html, 2005.

[10] D. M. Weiss and C. T. R. Lai. Software Product-Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, Boston, MA, 1999.

127


