
FeaturePlugin: Feature Modeling Plug-In for Eclipse∗

Michał Antkiewicz, Krzysztof Czarnecki
University of Waterloo

200 University Ave. West
Waterloo, ON N2V 1C3, Canada

{mantkiew,kczarnec}@swen.uwaterloo.ca

ABSTRACT
Feature modeling is a key technique used in product-line de-
velopment to model commonalities and variabilities of product-
line members. In this paper, we present FeaturePlugin, a
feature modeling plug-in for Eclipse. The tool supports
cardinality-based feature modeling, specialization of feature
diagrams, and configuration based on feature diagrams.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—
Tools; D.2.2 [Software Engineering]: Design Tools and
Techniques—Computer-aided software engineering (CASE)

General Terms
Design

Keywords
Configuration, domain analysis, software-product lines, soft-
ware reuse, system families, variability modeling and man-
agement

1. INTRODUCTION
Development of reusable software requires a product-line

perspective, in which a product-line member is built from
a common set of reusable assets [6, 24]. Feature modeling
allows us to model the common and variable properties of
product-line members throughout all stages of product-line
engineering. At an early stage, feature modeling enables
product-line scoping, i.e., deciding which features should be
supported by a product line and which should not. In de-
sign, the points and ranges of variation captured in feature
models need to be mapped to a common product-line archi-
tecture. Furthermore, feature models allow us to scope and
derive domain-specific languages, which are used to specify

∗Supported by NSERC Discovery and IBM Eclipse Innova-
tion Grants.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop, Oct. 24-28,
2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-833-4/04/0010 ...$5.00.

product-line members in generative software development [7,
9]. Finally, feature models are also useful in product devel-
opment as a basis for estimating development cost and effort,
and automated or manual product derivation.

This paper describes FeaturePlugin, an Eclipse plug-in for
feature modeling. While bringing Eclipse closer to software
product-line and generative development communities, pro-
viding tool support for feature modeling as an Eclipse plug-
in is particularly attractive for two reasons. First, integrat-
ing feature modeling as part of a development environment
helps to optimally support modeling variability in different
artifacts. This is important since variability permeates all
artifacts and aspects of a product line, including implemen-
tation code, models, documentation, development process
guidance, languages, libraries, and more. Secondly, we were
able to generate the basic structure of FeaturePlugin using
the generator for tree-oriented model editors provided by the
Eclipse Modeling Framework (EMF), which significantly re-
duced our development effort. This was possible because
feature modeling follows a tree structure.

The remainder of this paper is organized in six sections.
Section 2 gives a brief introduction to feature modeling us-
ing an example. Support for configuration based on feature
models is described in Section 3. Defining and checking addi-
tional constraints is covered in Section 4. Section 5 presents
the feature-diagram specialization capability of the plug-in.
Section 6 describes the support for user-defined annotations.
Related work is given in Section 7. Section 8 concludes with
a discussion and ideas for future work.

2. FEATURE MODELING
Feature modeling was proposed as part of the Feature-

Oriented Domain Analysis (FODA) method [13], and since
then, it has been applied in a number of domains includ-
ing telecom systems [12, 16], template libraries [9], network
protocols [1], and embedded systems [8]. Our plug-in imple-
ments cardinality-based feature modeling [10], which extends
the original feature modeling from FODA with feature and
group cardinalities, feature attributes, feature diagram ref-
erences, and user-defined annotations.

A feature is a system property that is relevant to some
stakeholder and is used to capture commonalities or discrim-
inate among products in a product line. A feature model
consists of one or more feature diagrams, which organize
features into hierarchies. Figure 1 shows a sample feature
model as it appears in the editing view of the plug-in. The
model describes a product line of electronic shops. It con-
sists of four feature diagrams, each having a root feature

67

OOPSLA'04 Eclipse Technology eXchange (ETX) Workshop,
Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM

indicated by the root symbol . The root feature Payment

has two subfeatures: PaymentTypes and FraudDetection.

The symbol indicates that PaymentTypes has a feature
cardinality of [1..1]. Feature cardinality is an interval denot-
ing how often a subfeature (and any possible subtree) can be
cloned as a child of its parent when specifying a concrete sys-
tem. The cardinality of [1..1] for PaymentTypes means that
the payment aspect of a system must include payment types
at least and at most once. In contrast, FraudDetection is
optional, i.e., its cardinality is [0..1], as indicated by the

symbol . The available payment types, i.e., CreditCard,
DebitCard, and PurchaseOrder, are members of a feature
group. The group symbol indicates group cardinality
〈1– k〉, where k is the group size. Thus, our shop can sup-
port any non-empty subset of the three payment types. The
other group symbol indicates group cardinality of 〈1– 1〉,
unless the group cardinality is stated explicitly. For exam-
ple, Expiration has a group with cardinality 〈1– 1〉, whereas
Chars has a group with cardinality 〈2– 4〉 (meaning that
at least two different character types need to be used in a
password). Grouped features are indicated by the symbol

. Note that, in contrast to solitary features (i.e., subfea-
tures that are not grouped), grouped features do not have
feature cardinalities. A feature can have an attribute, in
which case the attribute type is indicated in parenthesis,
e.g., InDays(Integer). If a feature has cardinality other
than [0..1] or [1..1], the cardinality is specified next to the
feature, e.g., Method. Observe that the cardinality of Method
has ∗ as upper bound, which means that Method can be
cloned an unbounded number of times. Thus, a shop can
have one or more custom shipment methods with individual
rates. Finally, the root feature EShop has references to the
three other diagrams, e.g., ref:Payment refers to the dia-
gram with the root feature Payment. Note that references
have cardinalities, too. For example, ref:Shipping is op-
tional.

3. FEATURE-BASED CONFIGURATION
Configuration is the process of deriving a concrete con-

figuration conforming to a feature diagram by selecting and
cloning features, and specifying attribute values [10]. Fig-
ure 2 shows a configuration of the EShop feature diagram
from Figure 1. Note that references to feature diagrams
have been automatically unfolded. Check boxes appear next
to optional features and grouped features to allow their se-
lection. Features with cardinality whose upper bound is
greater than 1 can be cloned. For example, Method was
cloned two times, which automatically updated its cardinal-
ity from [1..∗] to [0..∗]. Also, attribute values for the two
clones of Method and FlatRate as well as for InDays were
specified.

Alternatively, a configuration can also be specified using
a configuration wizard (see Figure 3). The wizard traverses
the feature diagram top-down and left-to-right and offers the
available configuration choices within the diagram on sepa-
rate pages. A configuration specified using the wizard can
also be viewed and fine-tuned using the tree-based interface
as in Figure 2.

The resulting configuration can be used as input to code
generators (as shown in [8]), or it can be accessed by a sys-
tem as a runtime configuration. For this purpose, the con-
figuration can be written out as an XML file, or it can be

Figure 1: Example of a feature model in editor view

Figure 2: Configuration of EShop from Figure 1

68

Figure 3: Wizard-based configuration of EShop from
Figure 1

Figure 4: Constraints evaluated on the configuration
from Figure 2

accessed in memory as an EMF model. When a configura-
tion is exported to XML, features whose check boxes where
not checked or whose cardinality is [0..n] are ignored, as they
are not considered to part of the configuration.

4. SPECIFYING AND CHECKING ADDI-
TIONAL CONSTRAINTS

Feature models often need to contain additional constraints,
i.e., those that cannot be expressed as feature or group car-
dinalities. Common examples are implies and excludes con-
straints. In general, additional constraints in cardinality-
based feature models require tree-oriented navigation and
query facilities, iteration mechanisms or quantifiers, and
ways of counting feature clones in the scope of a given fea-
ture within a configuration. Furthermore, logic, arithmetic,
set, and string operators on feature attributes and feature
sets are desirable. Such constraints can be adequately ex-
pressed using XPath 2.0 [25]. If necessary, XPath can be
easily extended with user-defined functions.

Figure 4 shows a few examples. The first constraint is
an example of a local constraint requiring that the attribute
of InDays is positive. The second constraint involves sev-
eral features and states that selecting FraudDetection im-
plies that CreditCard and/or DebitCard are selected (as-
suming that fraud detection is applicable to electronic pay-
ment only). The third constraint existentially quantifies
over feature clones and states that at least one custom ship-
ping method should have a rate of more than 0.

FeaturePlugin can check the additional constraints for a
given configuration. For example, the configuration in Fig-
ure 2 satisfies all the constraints from Figure 4.

Figure 5: Example of a specialization of EShop

5. SPECIALIZATION OF FEATURE DIA-
GRAMS

Specialization of a feature diagram yields another feature
diagram, such that the set of configurations denoted by the
latter diagram is a subset of the configurations denoted by
the former diagram [10]. Specialization is useful if config-
uration needs to be performed in stages. For example, a
diagram describing a security profile offered by the comput-
ing infrastructure of an organization could be specialized for
each department of the organization, and then for each com-
puter within the departments. Another application is when
an organization wants to provide specialized product lines
to different customers based on one common, larger prod-
uct line, which it maintains internally (see [11] for concrete
examples).

When specializing a diagram, a copy of the original dia-
gram is created and series of specialization operations can
be applied to the copy, such as refining feature and group
cardinalities, removing and selecting features from a group,
assigning attribute values, cloning solitary features, and un-
folding references to feature diagrams (see [10] for a precise
definition of the specialization operations). The resulting
diagram is guaranteed to be a specialization of the original
one. Figure 5 shows a specialization of our EShop feature
diagram. The specialization operations are available from
the context menu of a selected feature, group, or reference.
In our example in Figure 5, the references to Payment and
PasswordPolicy were unfolded, PurchaseOrder and Never

were removed from their respective groups, InDays was se-
lected from its group, the cardinality of ref:Shipping was
refined to [0..0], and the cardinality of FraudDetection was
refined to [1..1]. Note that empty groups and removed fea-
tures are marked by the cross symbol and still visible,
but their display could also be suppressed. Of course, a spe-
cialized diagram can be used as a basis for configuration or
another specialization.

69

Figure 6: Metamodel for the concept of a solitary
feature

6. USER-DEFINED ANNOTATIONS
During feature modeling, in addition to feature diagrams,

other information, such as examples of existing systems im-
plementing a given feature, feature priorities, stakeholders
interested in a given feature, binding times, implementation
status, developers responsible for a given feature, etc., needs
to be recorded as annotations. The annotations may need
to be attached to the feature model itself and/or its ele-
ments, such as diagrams, features, groups, and references.
However, exactly what information needs to be recorded is
usually project-dependent. This requirement can be accom-
modated by providing a user-extensible metamodel of the
feature notation [2]. The metamodel is represented as a
feature model itself and contains definitions of feature di-
agrams, features, groups, references, etc. Figure 6 shows
the metamodel for the concept of a solitary feature, which
has been extended with the user-defined feature Priority

and its subfeatures. The other features in the metamodel
are system-defined. When editing a feature model, the in-
formation associated with a selected element is shown in a
properties view, which displays a configuration of the cor-
responding metamodel. This is demonstrated in Figure 7,
which shows a fragment of our sample feature model and the
information associated with the selected feature FlatRate.
The user can access the metamodel of a given feature model
through the Meta-Modeling tab shown in Figure 7 and edit
it just as any other feature model, except that the system-
defined features in the metamodel cannot be removed or
renamed.

7. RELATED WORK
AmiEddi [22, 18] was the first editor supporting the fea-

ture modeling notation from [9]. That notation did not have
feature and group cardinalities. As a successor to AmiEddi,
CaptainFeature [2, 3] implements a cardinality-based no-
tation that is similar to the one described in this paper.
However, CaptainFeature renders feature diagrams in the
FODA-style with extensions from [9, 10] (see Figure 8),
whereas FeaturePlugin uses the tree widget of the Standard
Widget Toolkit (SWT).

ConfigEditor [8] was an initial prototype implementing
feature-based configuration. This functionality was later in-
tegrated into CaptainFeature. The configuration interface

Figure 7: Example of specifying the properties of a
solitary feature

Figure 8: Alternative rendering style for feature
models

described in this paper removes the strict top-down config-
uration order of ConfigEditor and CaptainFeature.

ReqiLine is a research tool integrating feature modeling
and requirements engineering [23]. The tool can render fea-
ture models similar to CaptainFeature. The actual feature
notation does not support cardinalities, but allows defining
various relationships between features across the feature hi-
erarchy. The tool can check models for consistency and has
basic product configuration capabilities.

Pure::Variants is a commercial tool supporting feature
modeling and configuration using a tree-view rendering sim-
ilar to the one presented in this paper, but without fea-
ture cardinalities [20, 4]. In other words, Pure::Variants
does not support cloning. Pure::Variants allows modeling
global constraints between features and it offers interac-
tive, constraint-based configuration using a Prolog-based
constraint solver. Although not directly based on feature
modeling, GEARS is another commercial tool for model-
ing and configuring software variants [15]. GEARS models
variability as sets of parameters, where different parameter
types stand for different kinds of variability, e.g., Boolean
for optionality, enumeration for alternatives, and set for tak-
ing subsets. Although the parameters are not arranged into
hierarchies as in feature diagrams, they can be organized

70

into separate modules related by import statements. Global
constraints among parameters can also be defined and they
will be checked during product configuration, which is done
through interactive forms. Both Pure::Variants and GEARS
have a built-in model of configuring sets of actual software
components such as source files.

Another class of software configuration tools is emerg-
ing based on configuration research in Artificial Intelligence
(AI), which in the past has been mostly focusing on con-
figuring physical products [21]. Recent examples of ap-
plying AI configuration techniques to software component
and product-line configuration are works by Myllärniemi et
al [19], MacGregor [17], and Krebs et al [14]. The main
difference between AI configuration approaches and config-
uration approaches based on feature modeling is the rich-
ness of the underlying structure. Most AI configuration ap-
proaches are based on an object model with classification
(is-a) and aggregation (part-of) and user-defined relation-
ships, over which local and global constraints are defined
[21]. Feature modeling is focused on capturing choices (e.g.,
alternative and optional features) rather than different kinds
of relationships, which is left to other modeling notations
such as UML.

An approach to feature modeling and configuration based
on XML was proposed by Cechticky et al. [5]. In this ap-
proach, a feature model is entered directly as XML using
an XML editor guided by an XML Schema representing the
metamodel of the feature modeling notation. Similarly, a
configuration is entered as XML using another XML Schema
that was generated by an XSLT script from the XML rep-
resenting the feature model. Another XSLT script is run
on the configuration to detect any constraint violations. Al-
though this approach goes a long way and may be the pre-
ferred one in settings where XML is already in heavy use,
dedicated tools for feature-model editing and configuration
can provide more assistance to the user.

As of writing, none of the tools listed above supports
feature-diagram specialization.

8. DISCUSSION AND FUTURE WORK
The basic structure of FeaturePlugin was generated from

an EMF model of the feature modeling notation. This saved
us a significant amount of development effort. The gener-
ated editor plug-in was customized to provide the necessary
views and operations. Both the EMF model and the ad-
ditional customization code were developed in an iterative
and incremental way. Some requirements with respect to the
user interface were not easily accommodated by the provided
infrastructure and required some workarounds or slight com-
promises. However, the development effort savings due to
infrastructure reuse outweighed these difficulties by far.

The user interface for rendering feature models as de-
scribed in this paper allows for very efficient entry and edit-
ing of large feature diagrams. The current FeaturePlugin
interface supports entering and editing feature diagrams us-
ing the keyboard only. Feature names and attribute values
can be edited in-place without the need to switch to the
properties view. Thanks to the ability to collapse the chil-
dren of a node, large diagrams can be browsed and edited
without the need to split them into smaller parts using fea-
ture diagram references.

The traditional notation shown in Figure 8 is often useful
when presenting or discussing feature diagrams, but it only

works well when the diagrams are relatively small. How-
ever, this problem can be addressed by providing filtering
and selection facilities to show only the currently relevant
part of a larger feature model. We plan to offer this nota-
tion as an alternative view, which will be developed using
the Graphical Editor Framework of Eclipse. We also plan
to provide a rendering using a table-tree view, in which se-
lected additional information associated with each feature
can be shown in a tabular form. This view will be use-
ful during product-line scoping to display feature valuations
from different stakeholders in a compact form.

In our future work, we plan to gain more experience with
applying FeaturePlugin to drive template-based code gen-
eration (similar to [8]), configuring models, and providing
runtime configuration in a variety of application domains.
Among others, we plan to explore using feature models to
specify different kinds of editors to be generated within the
EMF infrastructure and to configure aspects in the AspectJ
plug-in. Further development of FeaturePlugin will include
additional configuration interfaces (e.g., forms) and render-
ings of feature models. Also, we plan to allow customizing
the order in which the configuration wizard traverses a fea-
ture diagram and the content of each wizard page through
appropriate diagram annotations.

FeaturePlugin is available at http:\\gp.uwaterloo.ca\

fmp.

9. ACKNOWLEDGMENTS
The authors would like to thank Dr. Simon Helsen for his

invaluable input during numerous design meetings and his
extensive feedback as a user. Further thanks go to Sean Lau
for his comments on an earlier draft, to Krzysztof Pietroszek
for his effort in developing the wizard-based configuration,
and to Peter Kim and Krzysztof Pietroszek for developing
the support for additional constraints.

10. ABOUT THE AUTHORS
Micha�l Antkiewicz is a PhD candidate in the Department

of Electrical & Computer Engineering (ECE), University of
Waterloo. Krzysztof Czarnecki is an Assistant Professor in
the Department of ECE, University of Waterloo, where he
leads a research group on generative and model-based soft-
ware engineering.

11. REFERENCES
[1] M. Barbeau and F. Bordeleau. A protocol stack

development tool using generative programming. In
D. Batory, C. Consel, and W. Taha, editors,
Proceedings of the ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and
Component Engineering (GPCE’02), Pittsburgh,
October 6-8, 2002, LNCS 2487, pages 93–109.
Springer-Verlag, 2002.

[2] T. Bednasch. Konzept und Implementierung eines
konfigurierbaren Metamodells für die
Merkmalmodellierung. Diplomarbeit, Fachbereich
Informatik, Fachhochschule Kaiserslautern, Standort
Zweibrücken, Germany, Oct. 2002. Available from
http://www.informatik.fh-kl.de/~eisenecker/

studentwork/dt_bednasch.pdf (in German).

[3] T. Bednasch, C. Endler, and M. Lang.
CaptainFeature, 2002-2004. Tool available on

71

SourceForge at https:

//sourceforge.net/projects/captainfeature/.

[4] D. Beuche. Composition and Construction of
Embedded Software Families. PhD thesis,
Otto-von-Guericke-Universität Magdeburg, Germany,
Dec. 2003. Available from
http://www-ivs.cs.uni-magdeburg.de/~danilo.

[5] V. Cechticky, A. Pasetti, O. Rohlik, and
W. Schaufelberger. XML-Based Feature Modelling. In
J. Bosch and C. Krueger, editors, Software Reuse:
Methods, Techniques and Tools: 8th International
Conference, ICSR 2004, Madrid, Spain, July 5-9,
2009. Proceedings, volume 3107 of Lecture Notes in
Computer Science, pages 101–114. Springer-Verlag,
2004.

[6] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[7] K. Czarnecki. Overview of Generative Software
Development. In Proceedings of the European
Commission and US National Science Foundation
Strategic Research Workshop on Unconventional
Programming Paradigms, September, 15–17, 2004,
Mont Saint-Michel, France, 2004. http://www.swen.
uwaterloo.ca/~kczarnec/gsdoverview.pdf.

[8] K. Czarnecki, T. Bednasch, P. Unger, and U. W.
Eisenecker. Generative programming for embedded
software: An industrial experience report. In
D. Batory, C. Consel, and W. Taha, editors,
Proceedings of the ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and
Component Engineering (GPCE’02), Pittsburgh,
October 6-8, 2002, LNCS 2487, pages 156–172.
Springer-Verlag, 2002.

[9] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[10] K. Czarnecki, S. Helsen, and U. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software Process Improvement and
Practice, 10(1):7–29, jan/mar 2005.
http://swen.uwaterloo.ca/~kczarnec/spip05a.pdf.

[11] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration through specialization and multi-level
configuration of feature models. Software Process
Improvement and Practice, 10(2), 2005.
http://swen.uwaterloo.ca/~kczarnec/spip05b.pdf.

[12] M. Griss, J. Favaro, and M. d’ Alessandro. Integrating
feature modeling with the RSEB. In Proceedings of the
Fifth International Conference on Software Reuse
(ICSR), pages 76–85. IEEE Computer Society Press,
1998.

[13] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90TR
-21, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, Nov. 1990.

[14] T. Krebs and L. Hotz. Needed expresiveness for
representing features and customer requirements. In
Proceedings of Modelling Variability for
Object-Oriented Product Lines (ECOOP 2003
Workshop), Darmstadt, Germany, July 21 2003, July
2003. Available from

http://lki-www.informatik.uni-hamburg.de/

~krebs/publications/ECOOP2003.%pdf.

[15] C. W. Krueger. Software mass customization. White
paper. Available from http://www.biglever.com/

papers/BigLeverMassCustomization.pdf, Oct. 2001.

[16] K. Lee, K. C. Kang, and J. Lee. Concepts and
guidelines of feature modeling for product line
software engineering. In C. Gacek, editor, Software
Reuse: Methods, Techniques, and Tools: Proceedings
of the Seventh Reuse Conference (ICSR7), Austin,
USA, Apr.15-19, 2002, LNCS 2319, pages 62–77.
Springer-Verlag, 2002.

[17] J. MacGregor. Expressing domain variability for
configuration – invited paper. In F. Oquendo,
B. Warboys, and R. Morrison, editors, Software
Architecture: First European Workshop, EWSA 2004,
St Andrews, UK, May 21-22, 2004. Proceedings,
volume 3047 of Lecture Notes in Computer Science,
pages 230–240. Springer-Verlag, 2004.

[18] Mario Selbig. AmiEddi, 2000-2004. Tool available at
http://www.generative-programming.org.

[19] V. Myllärniemi, T. Asikainen, T. Männistö, and
T. Soininen. Tool for configuring product individuals
from configurable software product families. In
T. Männistö and J. Bosch, editors, Proceedings SPLC
2004 Workshop on Software Variability Management
for Product Derivation – Towards Tool Support, pages
24–34. Technical Report 6 – HUT-SoberIT-C6, Aug.
2004. Available from
http://www.soberit.hut.fi/SPLC-DWS/.

[20] pure-systems GmbH. Variant Management with
Pure::Consul. Technical White Paper. Available from
http://web.pure-systems.com, 2003.

[21] D. Sabin and R. Weigel. Product configuration
frameworks — a survey. IEEE Intelligent Systems,
13(4):42–49, 1998.

[22] M. Selbig. A feature diagram editor — analysis,
design, and implementation of its core functionality.
Diplomarbeit, Fachbereich Informatik, Fachhochschule
Kaiserslautern, Standort Zweibrücken, Germany, Oct.
2000.

[23] T. von der Maßen and H. Lichter. RequiLine: A
Requirements Engineering Tool for Software Product
Lines. In F. van der Linden, editor, Software
Product-Family Engineering: 5th International
Workshop, PFE 2003, Siena, Italy, November 4-6,
2003. Revised Papers, volume 3014, pages 168–180,
2004.

[24] D. M. Weiss and C. T. R. Lai. Software Product-Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[25] World Wide Web Consortium. XML Path Language
(XPath) 2.0, 2005. http://www.w3.org/TR/xpath20/.

72

