
Model TransformationsModel Transformations

Transformation of Simplified UML Model
Into Simplified Rdbms Model Using

AToM3 Meta-modeling Tool

Michal Antkiewicz
mantkiew@swen.uwaterloo.ca

OverviewOverview
● AToM3 Meta-modeling tool
● Project description: UML to Rdbms transformation
● UML and Rdbms Meta-model
● AToM3 Model Transformations
● Uml2Rdbms Transformation
● Demo
● AToM3 Tool Classification
● AToM3 Missing Features

AToMAToM33

● AToM3: A Tool for Multi-formalism and Meta-Modeling
● Developed at the Modeling, Simulation and Design Lab in the School of

Computer Science of McGill University
● Written entirely in Python
● Meta-models available with distribution:

– Entity-Relationship
– Deterministic and nondeterministic FSA
– Petri Nets
– Data Flow Diagrams
– Structure Charts

AToMAToM3 3 (II)(II)
● Uses Entity-Relationship formalism to describe models and meta-models
● Allows custom graphical representations of modeling concepts
● Performs model to model transformations in any modeling language

which can be meta-modeled in Entity-Relationship
● Generates tools to visually manipulate models described in given meta-

model and performs transformations on them
● Transformations are realized by pattern matching and graph rewriting

Project: Uml to Rdbms transformationsProject: Uml to Rdbms transformations
1. Each class in the simplified UML model with kind = "persistent" is

mapped on to a table:
a) Table name = “t_” + Class name
b) String attributes are mapped into VARCHAR columns
c) Integer attributes are mapped into NUMBER columns
d) Class attributes are not mapped into columns. Instead, columns are added for

each primitive type attribute of a class recursively. Column name = class
attribute name + “_” + primitive attribute name.

e) Attributes of kind = “primary” are collected in Primary Key of table

Project: Uml to Rdbms transformations (II)Project: Uml to Rdbms transformations (II)
2. Directed association between two persistent classes is mapped into

foreign key:
a) For each attribute with kind = “primary” in destination class, column is added

to table associated with source class
b) Column kind = “foreign”
c) Column name = association role + “_” + column name
d) Attributes of kind = “foreign” are collected in Foreign Key of table

Uml & Rdbms Meta-ModelUml & Rdbms Meta-Model
● Common meta-model is described using Entity-Relationship

Uml & Rdbms Meta-Model (II)Uml & Rdbms Meta-Model (II)
● Description of both entity and relationship includes:

– Attributes
– Constraints
– Cardinalities
– Appearance

● Class cardinalities are: and appearance:
– contains dir=Source, 0..N
– traceability dir=Source, 0..1
– type dir=Destination, 0..N
– association dir=Source, 0..N
– association dir=Destination, 0..N

AToMAToM33 Transformations Transformations
● A model transformation in AToM3 consists of:

– Initial Action
– Final Action
– Set of rules

● Models in AToM3 are represented as graphs
● Each rule defines how to graph-rewrite left hand side (LHS) to right

hand side (RHS)
● LHS is a pattern which is matched against model being transformed
● RHS is a graph that is inserted into the model instead of a matched

subgraph
● The complete definition of rule consists of: Name, Order, LHS, RHS,

Condition and Action

Uml2Rdbms TransformationUml2Rdbms Transformation
● Uml2Rdbms transformation has six rules:

– Class2Table_create – creates Table for persistent
Class and traceability link between them

– Class2Table_extend – adds columns for primitive
type attributes

– ClassAttr2Table_create – adds traceability link
between the class of the attribute and table

– ClassAttr2Table – recursively adds columns for
attributes of the type Class

– Assoc2FKey – creates foreign key
– CleanTraceability – remove all traceability links

● Rules are executed according to their order.
Lower order rules can be executed only if none
of higher order rules can be applied. If none of
the rules can be applied, transformation ends.

Uml2Rdbms Initial ActionUml2Rdbms Initial Action
● Declaration of lists of processed elements

self.rewritingSystem.procClasses = ATOM3List([1, 1, 1, 0], ATOM3String)
self.rewritingSystem.procAttrs = ATOM3List([1, 1, 1, 0], ATOM3String)
self.rewritingSystem.procForeignCols = ATOM3List([1, 1, 1, 0], ATOM3String)

● Processed element's state checkers
self.rewritingSystem.isProcClass = lambda cName: [] != filter (

lambda cn: cn.toString() == cName,
[]+self.rewritingSystem.procClasses.getValue()

)
... isProcAttr and isProcForeignCol that are similar

● Add element to processed list
self.rewritingSystem.addProcClass = lambda cName:

self.rewritingSystem.procClasses.setValue(
[ATOM3String(cName)]+self.rewritingSystem.procClasses.getValue
()

)
... addProcAttr and addProcForeignCol that are similar

Class2Table_create RuleClass2Table_create Rule

● Condition
className = self.getMatched(graphID, self.LHS.nodeWithLabel(1)).

name.toString()
return not self.graphRewritingSystem.isProcClass(className)

● Action
C = self.getMatched(graphID, self.LHS.nodeWithLabel(1)).name.toString

()
self.graphRewritingSystem.addProcClass(C)

● Table(3).name.AttrSpecify
return "t_" + self.getMatched(graphID, self.LHS.nodeWithLabel(1)).

name.toString()

Class2Table_extend RuleClass2Table_extend Rule

● Column(7).name.AttrSpecify
return self.getMatched(graphID, self.LHS.nodeWithLabel(3)).

name.toString()
● Column(7).kind.AttrSpecify

return self.getMatched(graphID, self.LHS.nodeWithLabel(3)).
kind.toString()

● Column(7).type.AttrSpecify
n = self.getMatched(graphID, self.LHS.nodeWithLabel(3)).

type.toString()
if n == 'String': return 'VARCHAR'
elif n == 'Integer': return 'NUMBER'
else: return 'unknown'

Class2Table_extend Rule (II)Class2Table_extend Rule (II)
● Condition

A = self.getMatched(graphID, self.LHS.nodeWithLabel(3))
if A.type.toString() == 'Class': return 0
else:
 return not self.graphRewritingSystem.isProcAttr(A.name.toString())

● Table(5).primaryKey.AttrSpecify
A = self.getMatched(graphID, self.LHS.nodeWithLabel(3))
T = self.getMatched(graphID, self.LHS.nodeWithLabel(5))
if A.kind.toString() == 'primary':
 return [A.name] + T.primaryKey.getValue()
else: return [] + T.primaryKey.getValue()

● Action
A = self.getMatched(graphID, self.LHS.nodeWithLabel(3)).

name.toString()
self.graphRewritingSystem.addProcAttr(A)

ClassAttr2Table_create RuleClassAttr2Table_create Rule

● Condition
className = self.getMatched(graphID, self.LHS.nodeWithLabel(5)).

name.toString()
return not self.graphRewritingSystem.isProcClass(className)

● Action
className = self.getMatched(graphID, self.LHS.nodeWithLabel(5)).

name.toString()
self.graphRewritingSystem.addProcClass(className)

ClassAttr2Table RuleClassAttr2Table Rule

● The new column's name, type and kind are set the same way as in
Class2Table_extend rule (instead of node 3, node 5 is taken)

ClassAttr2Table Rule (II)ClassAttr2Table Rule (II)
● Condition

A = self.getMatched(graphID, self.LHS.nodeWithLabel(5))
if A.type.toString() == 'Class':
 return 0
else:
 return not self.graphRewritingSystem.isProcAttr(A.name.toString())

● Action
A = self.getMatched(graphID, self.LHS.nodeWithLabel(1))
A2 = self.getMatched(graphID, self.LHS.nodeWithLabel(5))
if A.kind.toString() == 'primary':
 T = self.getMatched(graphID, self.LHS.nodeWithLabel(11))
 newName = A.name.toString() + '_' + A2.name.toString()
 T.primaryKey.setValue(

[ATOM3String(newName)] + T.primaryKey.getValue())
self.graphRewritingSystem.addProcAttr(A2.name.toString())

Assoc2FKey RuleAssoc2FKey Rule

● Column(11).name.AttrSpecify
AT = self.getMatched(graphID, self.LHS.nodeWithLabel(2)).

role.toString()
C = self.getMatched(graphID, self.LHS.nodeWithLabel(5)).

name.toString()
return AT + '_' + C

Assoc2FKey Rule (II)Assoc2FKey Rule (II)
● Condition

C = self.getMatched(graphID, self.LHS.nodeWithLabel(5))
if C.kind.toString() != 'primary':
 return 0
else:
 return not self.graphRewritingSystem.isProcForeignCol

(C.name.toString())
● Action

CName = self.getMatched(graphID, self.LHS.nodeWithLabel(5)).
name.toString()

self.graphRewritingSystem.addProcForeignCol(CName)
ATRole = self.getMatched(graphID, self.LHS.nodeWithLabel(2)).

role.toString()
T = self.getMatched(graphID, self.LHS.nodeWithLabel(3))
newName = ATRole + '_' + CName
T.foreignKey.setValue(

[ATOM3String(newName)] + T.foreignKey.getValue())

CleanTraceability RuleCleanTraceability Rule

● This rule is executed only when no other rule can be applied and it
simply removes all traceability links

Uml2Rdbms Final ActionUml2Rdbms Final Action
● Displays transformation summary

print 'Transformation execution finished'
print '---'
print 'processed classes:'
for c in self.rewritingSystem.procClasses.getValue():
 print c.toString()
print '---'
print 'processed attributes:'
for a in self.rewritingSystem.procAttrs.getValue():
 print a.toString()
print '---'
print 'processed foreign key attributes'
for c in self.rewritingSystem.procForeignCols.getValue():
 print c.toString()

Running A TransformationRunning A Transformation

● STEPbySTEP
● Execution modes:

– Sequential Random – a rule is executed
against randomly chosen matched subgraph

– Sequential Manual – a rule is executed
against subgraph chosen by user

– Parallel – a rule is executed against all
separate matched subgraphs in one step

DemoDemo
Expected results:
● t_House.PrimaryKey:

– recordNo
● t_Person.PrimaryKey:

– Id
– birthDate_day
– birthDate_month
– birthDate_year

● t_House.ForeignKey:
– owner_Id
– owner_birthDate_day
– owner_birthDate_month
– owner_birthDate_year

Transformation ResultTransformation Result

Transformation Result (II)Transformation Result (II)

● Properties of
– t_Person table
– t_House table

Rule Execution OrderRule Execution Order
● Beginning of execution
ATOM3:> Executing transformation Uml2Rdbms

ATOM3:> Trying rule 1, 2

ATOM3:> Rule 2(Class2Table_create) was executed!

ATOM3:> Trying rule 1

ATOM3:> Rule 1(Class2Table_extend) was executed!

ATOM3:> Trying rule 1

ATOM3:> Rule 1(Class2Table_extend) was executed!

ATOM3:> Trying rule 1, 2

ATOM3:> Rule 2(Class2Table_create) was executed!

ATOM3:> Trying rule 1

ATOM3:> Rule 1(Class2Table_extend) was executed!

ATOM3:> Trying rule 1

ATOM3:> Rule 1(Class2Table_extend) was executed!

ATOM3:> Trying rule 1, 2, 3

ATOM3:> Rule 3(ClassAttr2Table) was executed!

ATOM3:> Trying rule 1, 2, 3

ATOM3:> Rule 3(ClassAttr2Table) was executed!

● End of execution
ATOM3:> Trying rule 1, 2, 3

ATOM3:> Rule 3(ClassAttr2Table) was executed!

ATOM3:> Trying rule 1, 2, 3

ATOM3:> Rule 3(ClassAttr2Table) was executed!

ATOM3:> Trying rule 1, 2, 3, 4

ATOM3:> Rule 4(ClassAttr2Table_create) was executed!

ATOM3:> Trying rule 1, 2, 3, 4, 5

ATOM3:> Rule 5(Assoc2FKey) was executed!

ATOM3:> Trying rule 1, 2, 3, 4, 5

ATOM3:> Rule 5(Assoc2FKey) was executed!

ATOM3:> Trying rule 1, 2, 3, 4, 5

ATOM3:> Rule 5(Assoc2FKey) was executed!

ATOM3:> Trying rule 1, 2, 3, 4, 5

ATOM3:> Rule 5(Assoc2FKey) was executed!

ATOM3:> Trying rule 1, 2, 3, 4, 5, 10

ATOM3:> Rule 10(CleanTraceability) was executed!

Conclusions – ClassificationConclusions – Classification
● Transformation Rules

– Variables – model elements are not contained in variables
– Patterns – graphs, concrete graphical and semantically typed
– Logic – non-executable (constrains on attributes); executable imperative

(actions) and executable declarative (LHS, RHS graphs)
– LHS/RHS Syntactic Separation
– Unidirectional
– Parametrized
– No Intermediate Structures

● Rule Application Scoping
– No Scoping (rules can be applied to the whole model)

Conclusions – Classification (II)Conclusions – Classification (II)
● Source-Target Relationship

– Target model is the same as source model. Modifications are in-place and
update is destructive

● Rule Application Strategy
– Non-deterministic (both concurrent and one-point (sequential))
– Interactive

● Rule Scheduling
– Explicit, Internal (rule order)
– Rule Selection – Explicit Condition (higher order before lower order rules)
– Fixed-point rule iteration (until none of the rules can be applied)
– No Phasing

Conclusions – Classification (III)Conclusions – Classification (III)
● Rule organization

– No modularity mechanisms
– No reuse mechanisms
– Organizational Structure – rules are independent

● Tracing
– No Dedicated Support

● Directionality
– Unidirectional

Missing FeaturesMissing Features
● Multi-formalism models – saving models and transformations in more

than one formalism does not work
● Parallel meta-model and transformation development – adding new

attribute to entity or relationship causes the transformation to be invalid.
Changes to meta-model should be (when possible) incorporated into
transformations

● Results of transformation are not in separate model
● Actions and constraints

– the lack of transformation global name-space, for creation transformation
variables and functions

– the internal graph data structure of AToM3 is not hidden from the user
– ATOM3String type is not visible in AttrSpecify

Missing Features (II)Missing Features (II)
● User interface – not suitable for larger projects
● No modularity and explicit sub-transformation execution (sub-

transformation Attribute2column could be used by Class2Table_extend
and ClassAttr2Table rules)

● Debugging support – no syntactic analysis of Python code, debugging
only during transformation run-time, errors going deeply into the internal
structure of AToM3

● Scheduling
– the lack of “only once” matching for given element

● Pattern matching
– the lack of “not” matching

