
Final Project Report for Generative Programming Course, University of Waterloo, 2003

Model Transformations
Transformation of Simplified UML Model Into Simplified Rdbms

Model Using AToM3 Meta-modeling Tool
Michal Antkiewicz

mantkiew@swen.uwaterloo.ca

Abstract
Model to model transformations are the part of the Model Driven
Architecture, an initiative of Object Management Group. Many model
transformation tools have been created so far and the transformation of the
UML model to the Relational Database model is one of the most
representative examples used for validating the tools. In this paper I present
details and results of the model transformation project realized using AToM3

Meta-modeling tool. I also present the classification of the tool's features
according to the model transformation tools taxonomy proposed by Czarnecki
and Helsen in [CH03].

1 Introduction
The paper is organized as follows. Section 2 presents the AToM3 tool. Section 3 contains the requirements
of the project. Section 4 describes the Entity-Relationship formalism used for specifying meta-models.
Section 5 describes the common UML and Rdbms meta-model. Section 6 describes model transformations
and a solution to the project – Uml2Rdbms transformation. Section 7 presents transformation execution
modes. Section 8 presents the results of execution of Uml2Rdbms on an example model. Section 9 is a
classification of a tool. And the last section 10 presents missing features and drawback of the tool
encountered during the project.

In Appendix A, I describe how to install and run transformation in AToM3.

2 AToM3 Meta-modeling Tool
The name AToM3 is a shorthand of "A Tool for Multi-formalism and Meta-Modelling". The tool was
developed at the Modeling, Simulation and Design Lab in the School of Computer Science of McGill
University. The two main tasks of AToM3 are meta-modeling and model transforming [ATOM3].

Meta-modeling refers to the process of creating a formal description of some modeling language. AToM3

uses Entity-Relationship formalism for describing meta-models.

Some meta-models available with distribution are:

• Entity-Relationship

• Deterministic and nondeterministic FSA

• Petri Nets

Final Project Report for Generative Programming Course, University of Waterloo, 2003

• Data Flow Diagrams

• Structure Charts.

While constructing a meta-model, AToM3 allows the modeler creating of custom graphical representations
of entities and relationships, as well as specification of constraints and cardinalities.

Model transforming refers to the process of translating a model conforming to some meta-model to another
model, possibly conforming to different meta-model, using transformation rules.

As models and meta-models in AToM3 are represented as graphs, transformations are realized by pattern
matching and graph rewriting.

AToM3 is written entirely in Python and Python is the language used for specification of any conditions and
actions in models and transformations.

3 Project: Uml to Rdbms Transformation
The task of the project is to implement a model transformation from simplified UML model into simplified
Relational DB model.

UML model has classes, attributes and associations. Rdbms model has tables, columns, primary and foreign
keys. The UML and Rdbms meta-model is described in detail in Section 5.

The Uml2Rdbms transformation has to fulfill the following requirements.

Each class with meta-attribute kind equal to persistent should be mapped into a table. The new table's name
is a concatenation of prefix “t_” and class' name.

Attributes of primitive type are mapped into columns.

Attributes of type class are not mapped into columns. Instead, columns are added for each primitive type
attribute of a mapped attribute's class recursively. The new column's name is a concatenation of the
attribute's class name, “_”(underscore) and primitive attribute's name.

Attributes with meta-attribute kind = primary are collected in primary key of the table.

Instead of attributes of type class with meta-attribute kind = primary, columns created from primitive type
attributes of the class are collected in primary key of the table.

Directed association between two persistent classes is mapped into foreign key of the table created from
source class of the association.

Foreign key contains columns added for each attribute with meta-attribute kind = primary in destination
class. The new column's meta-attribute kind := foreign and new column's name is a concatenation of
association role , “_” and primary attribute's name.

There should be only one foreign key and one primary key.

4 Entity-Relationship Formalism in AToM3

In AToM3 meta-models can be build from entities and relationships. The description of both entity and
relationship consists of:

• name,

• attributes,

• constraints,

• cardinalities,

• appearance.

Final Project Report for Generative Programming Course, University of Waterloo, 2003

Attributes can be primitive types like ATOM3Integer or ATOM3String as well as Lists and Enums.

Constraints are Python expressions that evaluate to true or false. Can be used for example to check if
attribute values are correct. If any constraint is violated the entity or relationship cannot be created.

Cardinalities specify possible entity and relationship configurations. Cardinalities are of the form:
<name> dir=[Source|Destination], <min>, <max>

For entity E, it means that E can be either a source or a destination for min to max relationships name

For relationship R, it means that R can have min to max entities name connected to its source or destination.

Appearance is created using built-in graphical editor.

Entity's shape, colors, position of attributes can be specified. If an entity participates in relationships it
needs connectors. The graphical representation may be different according to some constraints. For
example visibility or color may depend on value of an attribute.

For relationship the appearance can be specified for first link, first segment, center, second segment and
second link.

5 Uml and Rdbms Meta-model
Figure 1 presents common UML and Rdbms meta-model. The model contains four entities: Class, Attribute,
Table, Column and five relationships: contains, type, association, traceability, consistsOf.

5.1 Entity Class
The entity Class has two attributes name and kind of type ATOM3String. Kind can be either “”(empty
string) or “primary”.

Class has following cardinalities:

– contains dir=Source, 0..N,

Figure 1 Common Uml and Rdbms Meta-model

Final Project Report for Generative Programming Course, University of Waterloo, 2003

– traceability dir=Source, 0..1,

– type dir=Destination, 0..N,

– association dir=Source, 0..N,

– association dir=Destination, 0..N.

There are no constraints.

The appearance of a class is presented on Figure 2. Labels <name> and <kind> indicate placement of
values of attributes name and kind respectively. Red dots depict connectors.

Figure 2 Appearance of a Class

5.2 Entity Attribute
Attribute has three attributes: name, kind and type, all of type ATOM3String.

Kind can be either “”(empty string) or “primary”.

Type can be either “Integer”, “String” or “Class”.

Attribute has following cardinalities:

– contains dir=Destination, 1..1,

– type dir=Source, 0..1,

There are no constraints.

The appearance of an attribute is presented on Figure 3.

Figure 3 Appearance of an Attribute

5.3 Entity Table
Table has three attributes: name of type ATOM3String and primaryKey, foreignKey both are lists of
ATOM3Strings. PrimaryKey and foreignKey contain names of columns.

Table has following cardinalities:

– contsistsOf dir=Source, 0..N,

– traceability dir=Destination, 0..1,

There are no constraints.

The appearance of a table is presented on Figure 4.

Final Project Report for Generative Programming Course, University of Waterloo, 2003

Figure 4 Appearance of a Table

Unfortunately, AToM3 does not display list attributes.

5.4 Entity Column
Column has three attributes: name, kind and type, all of type ATOM3String.

Kind can be either “”(empty string) or “primary”.

Type can be either “NUMBER” for “Integer” or “VARCHAR” for “String”.

Column has following cardinalities:

– consistsOf dir=Destination, 1..1.

There are no constraints.

The appearance of a column is presented on Figure 5.

Figure 5 Appearance of a Column

5.5 Relationship contains
Contains has no attributes and no constraints.

Cardinalities are:

• Class, dir=Destination , 1..1,

• Attribute, dir=Source, 1..1.

The appearance of a contains is presented on Figure 6.

Figure 6 Contains

5.6 Relationship type
Type has no attributes and no constraints.

Cardinalities are:

• Attribute, dir=Destination , 1..1,

• Class, dir=Source, 1..1.

The appearance of a type is presented on Figure 7.

Final Project Report for Generative Programming Course, University of Waterloo, 2003

Figure 7 Type

5.7 Relationship association
Association has two attributes name and role of the association end.

Cardinalities are:

• Class, dir=Source, 1..1,

• Class, dir=Destination, 1..1.

There are no constraints.

The appearance of an association is presented on Figure 8.

Figure 8 Association

5.8 Relationship traceability
Traceability has no attributes and no constraints.

Cardinalities are:

• Class, dir=Destination , 1..1,

• Table, dir=Source, 1..1.

The appearance of a traceability is presented on Figure 9.

Figure 9 Traceability

5.9 Relationship consistsOf
ConsistsOf has no attributes and no constraints.

Cardinalities are:

• Table, dir=Destination , 1..1,

• Column, dir=Source, 1..1.

The appearance of a consistsOf is presented on Figure 10.

Figure 10 ConsistsOf

I don't know why cardinalities in relationships have opposite directions than on the diagram. AToM3 does
not allow changing that. For example in consistsOf relationship on the diagram Table is the source and in
cardinality Table is the destination. One possible explanation is that entities and associations are connected

Final Project Report for Generative Programming Course, University of Waterloo, 2003

by connections. Indeed, the source of the relationship is connected to the destination of the connection from
the entity.

Now, when Uml2Rdbms meta-model is ready, AToM3 generates (by Model->Generate Code command) the
meta-model file, that can be opened later (by File->Open meta-model command) when creating models
conforming to that meta-model.

The meta-model is created in Entity-Relationship (ER) formalism, hence it is saved as (by convention):

• UmlRdbms_ER_mdl.py

AToM3 generates:

• Uml2Rdbms.py – main meta-model file

• ASG_UmlRdbms.py

• UmlRdbms_MM.py

For each entity and relationship <name>:

• name.py – description

• graph_name.py – appearance

When opening a meta-model (by File->Open meta-model) these files are simply imported to the AToM3

application code because they also contain Python code.

6 Model Transformations in AToM3

A model transformation in AToM3 consists of:

• Initial Action,

• Final Action,

• Set of rules.

All actions, conditions have to be written in Python.

Because models in AToM3 are represented as graphs, each rule defines how to graph-rewrite left hand side
(LHS) to right hand side (RHS).

• LHS is a pattern which is matched against model being transformed,

• RHS is a graph that is inserted into the model instead of a matched subgraph.

The complete definition of a rule consists of: Name, Order, LHS, RHS, Condition and Action.

During transformation, rules are executed according to their order. Lower order rules are tried before higher
order rules. If none of the rules can be applied (executed) transformation ends.

When rule is tried, first the condition is evaluated. If it evaluates to true (returns true) then LHS pattern is
matched against model. If LHS was matched, the part of the model is substituted by RHS and finally action
is executed.

If an entity or relationship was in LHS and is not in RHS, it will be deleted, similarly if it was not in LHS
and it is in RHS a new element will be created.

Following the project requirements I have created the transformation Uml2Rdbms (Figure 11). It has six
rules:

• Class2Table_create – creates a new table for persistent class and traceability link between them,

• Class2Table_extend – adds columns to the table from primitive type attributes in the class,

Final Project Report for Generative Programming Course, University of Waterloo, 2003

• ClassAttr2Table_create – if the type of the attribute is Class, this rule adds a traceability link between
that class and a table, this allows recursion,

• ClassAttr2Table_extend – recursively add columns for primitive type attributes of a class,

• Assoc2FKey – creates foreign key in table corresponding to source class,

• CleanTraceability – removes all traceability links after main transformation is finished.

Figure 11 presents a dialog box used for editing Uml2Rdbms transformation. On the right side of each rule
the number indicates order of the rule.

Figure 11 Uml2Rdbms Transformation

6.1 The idea of the Uml2Rdbms transformation
First, for each persistent class C a corresponding table T has to be created. Then primitive type attributes of
C are mapped into columns – rules Class2Table_create and Class2Table_extend.

Then class CT type attribute A has to be processed. Attributes of class CT are mapped into columns of table
T instead of attribute A. Because a traceability link between CT and T is added, class type attributes can be
processed recursively – rules ClassAttr2Table_create and ClassAttr2Table_extend.

Then, when all classes and all attributes have been already processed associations can be mapped into
foreign keys – rule Assoc2FKey. The order of Assoc2FKey is lower then previous rules, so it can be
executed only if none of them can be executed.

Then after all the work has been done, the traceability link can be removed – rule CleanTraceability.

The following subsections describe the Uml2Rdbms transformation in detail.

6.2 Initial Action
In AToM3 there is no scheduling in a sense “execute each rule on a given matching only once”. There is no
“NOT matching” either.

The only possibility to ensure, that there will be only one table and traceability link added is to record
somehow, that the given class has already been processed.

Final Project Report for Generative Programming Course, University of Waterloo, 2003

Also information about each attribute that has been mapped to a column needs to be recorded, to ensure that
only one column for each attribute is created.

The same way, columns that have been copied to create foreign key need to be recorded.

To do that, in Initial Action of the Uml2Rdbms transformation contains:

• declaration of lists of processed elements
self.rewritingSystem.procClasses = ATOM3List([1, 1, 1, 0], ATOM3String)
self.rewritingSystem.procAttrs = ATOM3List([1, 1, 1, 0], ATOM3String)
self.rewritingSystem.procForeignCols = ATOM3List([1, 1, 1, 0], ATOM3String)

• processed element's state checkers
self.rewritingSystem.isProcClass =
 lambda cName: [] != filter (
 lambda cn: cn.toString() == cName,
 []+self.rewritingSystem.procClasses.getValue()
)

Functions isProcAttr and isProcForeignCol are similar.

• add element to processed list functions
self.rewritingSystem.addProcClass =

lambda cName: self.rewritingSystem.procClasses.setValue(
 [ATOM3String(cName)]+self.rewritingSystem.procClasses.getValue()
)

Functions addProcAttr and addProcForeignCol are similar.

The only advantage of this solution is simplicity. It has many disadvantages:

• attribute names have to be unique,

• class names have to be unique,

• a class cannot be the target for more than one associations, because foreignKey in a source class is
created only once – column names are added to procForeignCols list.

However this simple implementation is good enough to evaluate the AToM3 tool and for this project.

6.2.1 Usage
These functions will be accessible in rule's Python code by following qualifier:

self.graphRewritingSystem.
Why? In AToM3 there's no global namespace for creating global variables and functions that can be used
throughout the transformation. Instead, they have to be added to the GraphRewritingSystem object which is
visible everywhere.

Unfortunately from the level of Initial and Final action it is accessible by transformation's attribute
rewritingSystem

And from the level of the rule's actions and conditions by rule's attribute
graphRewritingSystem

This is certainly because AToM3 was designed as a prototype or as a proof of concept tool.

Final Project Report for Generative Programming Course, University of Waterloo, 2003

6.3 LHS and RHS notation
LHS and RHS look like normal model with some differences:

• small, light gray numbers over an entity or relationship are GGLabels. GGLabels are unique and are
used to refer to a particular element,

• in the LHS we specify the conditions on attributes. There are three possibilities:

– <ANY> - matches to any value

– some_value - matches only to “some_value”

– specified – matches when specified constraint is satisfied.

• In the RHS we specify the new values of attributes. There are also three possibilities:

– <COPIED> – value is the same as in LHS,

– some_value – value is “some_value”,

– specified – value is returned by AttrSpecify method.

In the description of rules I use the notation
<ename>(n).<aname>.AttrSpecify

which means, that the value of the attribute aname of the entity ename with GGLabel n is specified by
return value of the AttrSpecify function with given code.

6.4 Programming idioms
One of heavily used programming idiom is retrieving a model object that was matched with a node in LHS.

To get the node with GGLabel n:
N = self.LHS.nodeWithLabel(n)

To get the model element which matched to node N in LHS:
E = self.getMatched(graphID, N)

To get the value of a string attribute attr of element E:
E.attr.toString()

6.5 Class2Table_create Rule
This rule creates a new table for the persistent class.

The condition ensures, that the class has not yet been processed (corresponding table has not been yet
created).

• Condition:
C = self.getMatched(graphID, self.LHS.nodeWithLabel(1)).name.toString()
return not self.graphRewritingSystem.isProcClass(C)

• LHS and RHS (Figure 12)

– Table(3).name.AttrSpecify
return "t_" +
 self.getMatched(graphID, self.LHS.nodeWithLabel(1)).name.toString()

Final Project Report for Generative Programming Course, University of Waterloo, 2003

• Action:
C = self.getMatched(graphID, self.LHS.nodeWithLabel(1)).name.toString()
self.graphRewritingSystem.addProcClass(C)

After the rule was executed, action adds the name of the class to the processed classes list.

6.6 Class2Table_extend Rule
This rule adds columns to the table from primitive type attributes in the class.
The condition ensures that matched attribute is not of type class and has not yet been processed.
• Condition:

A = self.getMatched(graphID, self.LHS.nodeWithLabel(3))
if A.type.toString() == 'Class':
 return 0
else:
 return not self.graphRewritingSystem.isProcAttr(A.name.toString())

• LHS and RHS (Figure 13)

– Column(7).name.AttrSpecify
return self.getMatched(graphID, self.LHS.nodeWithLabel(3)).name.toString()
– Column(7).kind.AttrSpecify
return self.getMatched(graphID, self.LHS.nodeWithLabel(3)).kind.toString()
– Column(7).type.AttrSpecify
n = self.getMatched(graphID, self.LHS.nodeWithLabel(3)).type.toString()
if n == 'String':

Figure 12 Class2Table_create Rule

Figure 13 Class2Table_extend Rule

Final Project Report for Generative Programming Course, University of Waterloo, 2003

 return 'VARCHAR'
elif n == 'Integer':
 return 'NUMBER'
else:
 return 'unknown'
– Table(5).primaryKey.AttrSpecify
A = self.getMatched(graphID, self.LHS.nodeWithLabel(3))
T = self.getMatched(graphID, self.LHS.nodeWithLabel(5))
if A.kind.toString() == 'primary':
 return [A.name] + T.primaryKey.getValue()
else:
 return [] + T.primaryKey.getValue()

• Action:
A = self.getMatched(graphID, self.LHS.nodeWithLabel(3)).name.toString()
self.graphRewritingSystem.addProcAttr(A)

6.7 ClassAttr2Table_create Rule
If the type of the attribute is class this rule adds a traceability link between that class and a table. This
allows recursion

• Condition:
C = self.getMatched(graphID, self.LHS.nodeWithLabel(5)).name.toString()
return not self.graphRewritingSystem.isProcClass(C)

• LHS and RHS (Figure 14)

Figure 14 ClassAttr2Table_create Rule

• Action:
C = self.getMatched(graphID, self.LHS.nodeWithLabel(5)).name.toString()
self.graphRewritingSystem.addProcClass(C)

Final Project Report for Generative Programming Course, University of Waterloo, 2003

6.8 ClassAttr2Table_extend Rule
This rule adds columns for primitive type attributes of a class linked with a table by traceability link.

• Condition:
A = self.getMatched(graphID, self.LHS.nodeWithLabel(5))
if A.type.toString() == 'Class':
 return 0
else:
 return not self.graphRewritingSystem.isProcAttr(A.name.toString())

• LHS and RHS (Figure 15)

The new column's attributes are set the same way as in Class2Table_extend rule (instead of node 3, node 5
is taken).

• Action:
A = self.getMatched(graphID, self.LHS.nodeWithLabel(1))
A2 = self.getMatched(graphID, self.LHS.nodeWithLabel(5))
if A.kind.toString() == 'primary':
 T = self.getMatched(graphID, self.LHS.nodeWithLabel(11))
 newName = A.name.toString() + '_' + A2.name.toString()
 T.primaryKey.setValue([ATOM3String(newName)] + T.primaryKey.getValue())
self.graphRewritingSystem.addProcAttr(A2.name.toString())

6.9 Assoc2FKey Rule
This rule creates foreign key in table corresponding to source class.

• Condition:
C = self.getMatched(graphID, self.LHS.nodeWithLabel(5))
if C.kind.toString() != 'primary':

Figure 15 ClassAttr2Table_extend Rule

Final Project Report for Generative Programming Course, University of Waterloo, 2003

 return 0
else:
 return not
 self.graphRewritingSystem.isProcForeignCol(C.name.toString())

• LHS and RHS (Figure 16)

– Column(11).name.AttrSpecify
AT = self.getMatched(graphID, self.LHS.nodeWithLabel(2)).role.toString()
C = self.getMatched(graphID, self.LHS.nodeWithLabel(5)).name.toString()
return AT + '_' + C

• Action:
CName = self.getMatched(graphID, self.LHS.nodeWithLabel(5)).name.toString()
self.graphRewritingSystem.addProcForeignCol(CName)
ATRole = self.getMatched(graphID, self.LHS.nodeWithLabel(2)).role.toString()
T = self.getMatched(graphID, self.LHS.nodeWithLabel(3))
newName = ATRole + '_' + CName
T.foreignKey.setValue([ATOM3String(newName)] + T.foreignKey.getValue())

6.10 CleanTraceability Rule
This rule removes all traceability links after transformation finished

• Condition: none

• LHS and RHS (Figure 17)

• Action: none

Figure 16 Assoc2FKey Rule

Final Project Report for Generative Programming Course, University of Waterloo, 2003

Figure 17 CleanTraceability Rule

6.11 Final Action
Displays transformation summary

print 'Transformation execution finished'
print '---'
print 'processed classes:'
for c in self.rewritingSystem.procClasses.getValue():
 print c.toString()
print '---'
print 'processed attributes:'
for a in self.rewritingSystem.procAttrs.getValue():
 print a.toString()
print '---'
print 'processed foreign key attributes:'
for c in self.rewritingSystem.procForeignCols.getValue():
 print c.toString()

7 Running a Transformation

Figure 18 Run Transformation Dialog

AToM3 provides several transformation execution modes.

• STEPbySTEP – means that user confirms every step of the execution,

Final Project Report for Generative Programming Course, University of Waterloo, 2003

• Execution modes:

– Sequential Random – a rule is executed against randomly chosen matched subgraph,

– Sequential Manual – a rule is executed against subgraph chosen by user,

– Parallel – a rule is executed against all separate matched subgraphs in one step.

8 Example Transformation Results

Figure 19 An Example UML Model

Expected results:

• t_House.PrimaryKey: {recordNo}

• t_Person.PrimaryKey: {Id, birthDate_day, birthDate_month, birthDate_year}

• t_House.ForeignKey:

 {owner_Id, owner_birthDate_day, owner_birthDate_month, owner_birthDate_year}

Figure 20 presents the model after transformation.

Final Project Report for Generative Programming Course, University of Waterloo, 2003

9 Classification of AToM3 features
This classification was done according to [CH03].

• Transformation Rules:

– Variables – model elements are not contained in variables,

– Patterns – graphs, concrete graphical and semantically typed,

– Logic – non-executable (constrains on attributes); executable imperative (actions) and executable
declarative (LHS, RHS graphs),

– LHS/RHS Syntactic Separation,

– Unidirectional,

– Parametrized,

– No Intermediate Structures.

• Rule Application Scoping

– No Scoping (rules can be applied to the whole model).

• Source-Target Relationship

– Target model is the same as source model. Modifications are in-place and update is destructive.

Figure 20 Example Model Transformation Result

Final Project Report for Generative Programming Course, University of Waterloo, 2003

• Rule Application Strategy

– Non-deterministic (both concurrent and one-point (sequential)),

– Interactive.

• Rule Scheduling

– Explicit, Internal (rule order),

– Rule Selection – Explicit Condition (higher order before lower order rules),

– Fixed-point rule iteration (until none of the rules can be applied),

– No Phasing.

• Rule organization

– No modularity mechanisms,

– No reuse mechanisms,

– Organizational Structure – rules are independent.

• Tracing

– No Dedicated Support.

• Directionality

– Unidirectional.

10 Missing Features and Drawbacks
In this section I present the summary of missing features. They can be divided into two types – tool related
and conceptual.

10.1 Tool Related Drawbacks
• Multi-formalism models

First I wanted to create two meta-models UML and Rdbms separately. Unfortunately, saving models and
transformations in more than one formalism does not work. When reopening the model or transformation
only model parts from one meta-model stay, other are lost.

• Parallel meta-model and transformation development

I was working in small iterations. Extending a bit meta-model, then extending a bit transformation.
Problems started when I needed to change the meta-model – the transformation becomes invalid. It is good
in case of deleting something from meta-model. But it happens also when adding new attribute to entity or
relationship.

Changes to meta-model should be in that case incorporated into transformations.

My solution to the problem was to remove the element that is going to be changed from the whole
transformation, then change the meta-model and finally add the changed element back to the same places.

• Results of transformation are not in separate model

There's no possibility of separation the source model from the result. It is especially important in case of
bigger models. One possible solution to this problem is simply remove the parts from the source model and
save the rest in the next file.

• Actions and constraints

Final Project Report for Generative Programming Course, University of Waterloo, 2003

The use of Python as a programming language is not so bad, because Python is easy to learn and use, but
also powerful.

The problem is that the internal graph data structure of AToM3 is not hidden from the user. The knowledge
of it is necessary especially when debugging – error messages from Python go deeply into the internal
structure of AToM3.

Another big problem is the lack of transformation global name-space, for creation transformation variables
and functions.

One of strange problems I encountered was also that ATOM3String type is not visible in AttrSpecify.
Instead of specifying the new value of foreignKey in AttrSpecify function I had to move that code to final
action (Assoc2FKey rule).

• User interface is not suitable for larger projects

There is no modularity and explicit sub-transformation execution It would be good to have a sub-
transformation Attribute2Column that would transform a primitive attribute into a column. It could be used
by Class2Table_extend and ClassAttr2Table_extend rules and I could avoid duplication of code.

• Debugging support

This is the problem in case of a user not very familiar with Python – there is no syntactic analysis of Python
code that is entered in conditions and actions.

Debugging can be done only during transformation run-time, errors going deeply into the internal structure
of AToM3. This makes work very hard because to test the transformation it has to be imported for
execution. Then in case of an error, even if transformation is fixed in another instance of AToM3,
reimporting the transformation doesn't work. You have to restart the tool, reload the model, import the
transformation and run it.

10.2 Conceptual Drawbacks
• Scheduling

When some more advanced scheduling is necessary, the user has to program it himself. In case of my
project the problem was the lack of “only once” matching for given matching or some elements in a
matching.

• Pattern matching

How to specify that some parts in LHS should not appear? The problem was the lack of “not” matching. I
solved the problem by remembering the lists of processed elements so that the rule condition could check if
an element has already been processed.

Appendix A
The general advice is to restart AToM3 when switching to new meta-model, reloading transformation or
after code generation. AToM3 is still a prototype.

1. To install the project unzip Uml2Rdbms.zip file into the installation directory of AToM3.

2. Run AToM3 and choose File->Options. Add UmlRdbms to Path Directories and type it in Dir.for code
generation input.

3. To open UmlRdbms meta-model Entity-Relationship model choose File->Open Model and select
UmlRdbms\UmlRdbms_ER_mdl.py.

4. To open sample UML model restart the tool and choose File->Open Model and select
UmlRdbms\exampleFull.py. Note that AToM3 automatically loaded correct meta-model.

Final Project Report for Generative Programming Course, University of Waterloo, 2003

5. To run the transformation choose Transformation->Execute transformation. Click New button, then
Browse. Select UmlRdbms\Uml2Rdbms.py. Press OK to run the transformation.

6. To edit/browse the transformation choose Transformation->Load transformation. Select
UmlRdbms\Uml2Rdbms_mdl.py. To edit choose Transformation->Edit transformation. To edit the rule
select it in the Rules list and press Edit button.

11 References
[ATOM3] http://atom3.cs.mcgill.ca/

[CH03] K. Czarnecki, S. Helsen, "Classification of Model Transformation Approaches", OOPSLA'03
Workshop on Generative Techniques in the Context of Model-Driven Architecture, 2003

